

A BASELINE BETA-BEAM

Mats Lindroos
AB Department, CERN

on behalf of the Beta-beam Study Group

http://cern.ch/beta-beam/

Outline

- Beta-beam baseline design
 - A baseline scenario, ion choice, main parameters
 - Ion production
 - Decay ring design issues
- Ongoing work and recent results
 - Asymmetric bunch merging for stacking in the decay ring
 - Decay ring optics design & injection
- Future R&D within EURISOL
 - The Beta-beam Task
- Conclusions

Introduction to beta-beams

- Beta-beam proposal by Piero Zucchelli
 - A novel concept for a neutrino factory: the beta-beam, Phys. Let. B, 532 (2002) 166-172.
- AIM: production of a pure beam of electron neutrinos (or antineutrinos) through the beta decay of radioactive ions circulating in a high-energy (γ ~100) storage ring.
- Baseline scenario
 - Avoid anything that requires a "technology jump" which would cost time and money (and be risky).
 - Make maximum use of the existing infrastructure.

Beta-beam baseline design

Main parameters (1)

Factors influencing ion choice

- Need to produce reasonable amounts of ions.
- Noble gases preferred simple diffusion out of target, gaseous at room temperature.
- Not too short half-life to get reasonable intensities.
- Not too long half-life as otherwise no decay at high energy.
- Avoid potentially dangerous and long-lived decay products.

Best compromise

- Helium-6 to produce antineutrinos: ${}_{2}^{6}He \rightarrow {}_{3}^{6}Li\ e^{-}\overline{V}$

Average $E_{cms} = 1.937 \text{ MeV}$

- Neon-18 to produce neutrinos: ${}^{18}_{10}Ne \rightarrow {}^{18}_{9}F \ e^+ v$

Average $E_{cms} = 1.86 \text{ MeV}$

FLUX

- The Design Study is aiming for:
 - A beta-beam facility that will run for a "normalized" year of 10⁷ seconds
 - An integrated flux of 10 10^{18} anti-neutrinos (6 He) and 5 10^{18} neutrinos (18 Ne) in ten years running at γ =100

With an Ion production in the target to the ECR source:

- ⁶He= 2 10¹³ atoms per second
- ¹⁸Ne= 8 10¹¹ atoms per second

Ion production - ISOL method

- Isotope Separation OnLine method.
- Few GeV proton beam onto fixed target.

⁶He production from ⁹Be(n, α)

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- 6 He production rate is $\sim 2 \times 10^{13}$ ions/s (dc) for ~ 200 kW on target.

¹⁸Ne production

• Spallation of close-by target nuclides

- ²⁴Mg¹² (p, p₃ n₄) ¹⁸Ne¹⁰.
- Converter technology cannot be used; the beam hits directly the magnesium oxide target.
- Production rate for 18 Ne is ~ $1x10^{12}$ ions/s (dc) for ~200 kW on target.
- ¹⁹Ne can be produced with one order of magnitude higher intensity but the half-life is 17 seconds!

From dc to very short bunches

Wasted time or accumulation time?

Decay ring design aspects

- The ions have to be concentrated in a few very short bunches
 - Suppression of atmospheric background via time structure.
- There is an essential need for stacking in the decay ring
 - Not enough flux from source and injector chain.
 - Lifetime is an order of magnitude larger than injector cycling (120 s compared with 8 s SPS cycle).
 - Need to stack for at least 10 to 15 injector cycles.
- Cooling is not an option for the stacking process
 - Electron cooling is excluded because of the high electron beam energy and, in any case, the cooling time is far too long.
 - Stochastic cooling is excluded by the high bunch intensities.
- Stacking without cooling "conflicts" with Liouville

Asymmetric bunch pair merging

- Moves a fresh dense bunch into the core of the much larger stack and pushes less dense phase space areas to larger amplitudes until these are cut by the momentum collimation system.
- Central density is increased with minimal emittance dilution.
- Requirements:
 - Dual harmonic rf system. The decay ring will be equipped with 40 and 80 MHz systems (to give required bunch length of ~10 ns for physics).
 - Incoming bunch needs to be positioned in adjacent rf "bucket" to the stack (i.e., ~10 ns separation!).

Simulation (in the SPS)

BUNCH PAIR MERGING IN THE SPS

Test experiment in the PS

A large bunch is merged with a small amount of empty phase space.

Longitudinal emittances are combined.

Minimal blow-up.

Test experiment in CERN PS

S. Hancock, M. Benedikt and J-L. Vallet, *A proof of principle of asymmetric bunch pair merging*, AB-Note-2003-080 MD

Ingredients

- h=8 and h=16 systems of PS.
- Phase and voltage variations.

Decay ring injection design aspects

- Asymmetric merging requires fresh bunch injected very close longitudinally to existing stack. Conventional injection with fast elements (septa and kickers) is excluded.
- Alternative injection scheme
 - Inject an off-momentum beam on matched dispersion trajectory.
 - No fast elements required (bumper rise and fall \sim 10 μ s).
 - Requires large normalized dispersion at injection point (small beam size and large separation due to momentum difference).
 - Price to be paid is larger magnet apertures in decay ring.

Decay ring arc lattice design

Decay ring injection envelopes

A. Chance, CEA-Saclay (F)

Decay losses

Losses during acceleration

 Full FLUKA simulations in progress for all stages (M. Magistris and M. Silari, *Parameters of* radiological interest for a beta-beam decay ring, TIS-2003-017-RP-TN).

• Preliminary results:

- Manageable in low-energy part.
- PS heavily activated (1 s flat bottom).
 - Collimation? New machine?
- SPS ok.
- Decay ring losses:
 - Tritium and sodium production in rock is well below national limits.
 - Reasonable requirements for tunnel wall thickness to enable decommissioning of the tunnel and fixation of tritium and sodium.
 - Heat load should be ok for superconductor.

FLUKA simulated losses in surrounding rock (no public health implications)

Future R&D

- Future beta-beam R&D together with EURISOL project
- Design Study in the 6th Framework Programme of the EU

The EURISOL Project

- Design of an ISOL type (nuclear physics) facility.
- Performance three orders of magnitude above existing facilities.
- A first feasibility / conceptual design study was done within FP5.
- Strong synergies with the low-energy part of the beta-beam:
 - Ion production (proton driver, high power targets).
 - Beam preparation (cleaning, ionization, bunching).
 - First stage acceleration (post accelerator ~100 MeV/u).
 - Radiation protection and safety issues.

Beta-beam task

From exit of the heavy ion Linac (~100 MeV/u) to the decay ring (~100 GeV/u).

Beta-beam sub-tasks

- Beta-beam task starts at exit of EURISOL post accelerator and comprises the conceptual design of the complete chain up to the decay ring.
- Participating insitutes: CERN, CEA-Saclay, IN2P3, CLRC-RAL, GSI, MSL-Stockholm.
- Organized by a steering committee overseeing 3 sub-tasks.
 - ST 1: Design of the low-energy ring(s).
 - ST 2: Ion acceleration in PS/SPS and required upgrades of the existing machines including new designs to eventually replace PS/SPS.
 - ST 3: Design of the high-energy decay ring.
 - Detailed work and manpower planning is under way.
 - Around 38 (13 from EU) man-years for beta-beam R&D over next 4 years (only within beta-beam task, not including linked tasks).

Can we reach the FLUX?

LOW-ENERGY BETA-BEAMS

C. Volpe, hep-ph/0303222 Journ. Phys. G. 30(2004)L1

THE PROPOSAL

To exploit the beta-beam concept to produce intense and pure <u>low-energy neutrino beams</u>.

PHYSICS POTENTIAL

 Neutrino-nucleus interaction studies for particle, nuclear physics, astrophysics (nucleosynthesis).
 Important for neutrinoless double-beta decay.

C. Volpe, hep-ph/0501233

→ Neutrino properties, like v magnetic moment.

Conclusions

- Well-established beta-beam baseline scenario.
- Beta-Beam Task well integrated in the EURISOL DS.
 - Strong synergies between Beta-beam and EURISOL.
- · Design study started for "base line" isotopes.
- Baseline study should result in a credible conceptual design report.
 - We need a "STUDY 1" for the beta-beam to be considered a credible alternative to super beams and neutrino factories
 - New ideas welcome but the design study cannot (and will not) deviate from the given flux target values and the chosen baseline
 - Parameter list to be frozen by end of 2005
- Recent new ideas promise a fascinating continuation into further developments beyond (but based on) the ongoing EURISOL (beta-beam) DS
 - Low energy beta-beam, EC beta-beam, High gamma beta-beam, etc.
- And this is only the beginning...