NNN05@Aussois Apr.8, 2005

Status of J-PARC Neutrino Project T2K (Tokai-to-Kamioka) Takashi Kobayashi (KEK)

Contents

- 1. Introduction of T2K experiment
- 2. Sensitivities
- 3. Status of Construction
- 4. Summary

T2K experiment

Physics goals

- Discovery of $\nu_{\mu \rightarrow} \nu_e$ appearance
- •Precise meas. of disappearance $\nu_{\mu \rightarrow} \nu_{x}$
- **Discovery of CP violation (Phase2)** T.Kobayashi (KEK)

T2K collaboration

• Formed in May 2003

- 12 countries, 53 institutions
 - ~150 collaborators

• Spokesperson: K.Nishikawa

Canada: TRIUMF, U. Alberta, York U., U. Toronto, U. Victoria, U. Regina

China: IHEP(Inst. Of High Energy Phys.)

France: CEA Saclay

Italy: U. Roma, U. Bari, U. Napoli, U. Padova

Japan: ICRR, U. Tokyo, KEK, Tohoku U., Hiroshima U., Kyoto U., Kobe U., Osaka City U., U. Tokyo, Miyagi U. of Education

Korea: Seoul National U., Chonnam National U., Dongshin U., Kangwon U.,

Kyungpook National U., KyungSang National U., SungKyunKwan U., Yonsei U. Poland: Warsaw U.

Russia: INR

Spain: U. Barcelona, U. Valencia

Switzerland: U. Geneva, ETH

UK: RAL, Imperial College London, Queen Mary Westfield College London, U. Liverpool

USA: UCI, SUNY-SB, U. Rochester, U. Pennsylvania, Boston U., CSU, Duke, Dominguez Hills, BNL, UCB/LBL, U. Hawaii, ANL, MIT, LSU, LANL, U. Washington T.Kobayashi (KEK)

MW Proton Facility : J-PARC

Unique facility 3GeV+50GeV **Multi-purposes** •Materials and life sci. •Nucl. and part. phys. Nucl. transmutation

Location of JAERI at Tokai-village

Neutrino facility in J-PARC

Components

- Primary proton beam line
 - Normal conducting magnets
 - Superconducting arc
 - Proton beam monitors
- Target/Horn system
- Decay pipe (130m)
 - Cover OA angle 2~3 deg.
- Beam dump
- muon monitors
- Near neutrino detector

Special Features

- Superconducting combined function magnets
- Off-axis beam

Construction: JFY2004~2008

T.Kobayashi (KEK)

Narrow intense beam: Off-axis beam

7

- Muon monitors @ ~140m
 - Fast (spill-by-spill) monitoring of beam direction/intensity
- First near detector @280m
 - Flux/spectrum/ve
 - intensity/direction
- Second near detector @ ~2km
 - Almost same E_{ν} spectrum as for SK
 - Water Cherenkov can work
- Far detector @ 295km T.KobayaShi uper-Kamiokande (50kt)

dominant syst. in K2K

Conceptual Design of Near Detector @ 280m

Far Detectors

1st Phase (2009~, ≥5yrs) Super-Kamiokande(22.5kt) 2nd Phase (201x~?) Hyper-Kamiokande(~540kt)

T.Kobayashi (KEK)

Cover this region

11

Sensitivity: v_e appearance **Discovery of** v_e appearance (θ_{13} , Δm_{13}) $P_{\mu \to e} \approx \sin^{-2} \theta_{23} \cdot \sin^{-2} 2 \theta_{13} \cdot \sin^{-2} (1.27 \Delta m_{13}^2 L / E_{\nu})$ 10-1 $(\mathbf{P_e}, \theta_e)$ $sin^2 2\theta_{13}$ v_e >0.006(90%) 2010-2 E, **CHOOZ** excluded ·20 Signal+BG ²^m 410⁻³ 40 30 BG $\Delta m^2 = 3x10^{-3}eV^2$ 20 W/ 10% error $sin^2 2\theta_{13} = 0.1$ 10 for BG subtraction OA2° 5years 10-4 10⁻³ 10-2 10-1 3 2 4 $sin^2 2\theta_{13}$

Assuming $\sin^2\theta_{23}$ =0.5, δ =0, no matter 13

7

T.Kobayashi (KEK)

 $Ev_{rec}(GeV)$

3σ Sensitivity for CPV in T2K-II

3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

T.Kobayashi (KEK)

Status of R&D, Design, Construction

Ring orbi

11111

Fast extraction part

1010.0

in

2

11 -

3NBT

的用户行

Jan.28, 2005

50 GeV Synchrotron Construction Area B

Superconducting magnets

- 28 combined function magnets in arc part
 - Dipole Field: 2.587 T, Quad. Field: 18.62 T/m
 - Reduce cost while keeping large acceptance
 - Use common parts with LHC to reduce cost/risk
- First full size prototype completed
 - Cooled, current loaded
 - 7700A (ope. curr. @50GeV + 5%) achieved w/o any spontaneous quenching (Mar.4)
- In FY2005, mass production of magnets will start

Shell Welding Completed (Dec21,04)

Put in vertical cryostat for cooling/current loading test (Feb.21,2005)

TIT

Vacuum Vessel from Spain

T.Kobayashi (KEK)

Target Area

- Target, horns are installed. Filled with Helium gas (reduce Tritium, NOx production)
- Highly radio-activated (~1Sv/h, cf ~10Sv@JCO, Dose meter alarm: 0.3mSv/h)
 →Need remote-controlled maintenance system
- Need cooling (Helium vessel, radiation shield,..)

Target

- Carbon Graphite: 30mm(D)x900mm(L), 2 interaction length (70% int.)
- Energy deposit: 58kJ/spill (~20kW)
- Equivalent stress (∆T~200K) ~ 7MPa (<Tensile strength of 37MPa)
- Cooled at outer surface

R&D and Design Status

- Helium cooling method designed
- Prototype of Graphite target made
 Feasibility of machining proved
- Radiation damage of Graphite tested

Ichikawa, w/ U. Colorado

Horn system

900

1st Horn 2nd Horn

- Focus secondary pions into decay volume
- Field shape optimization completed
- 320kA pulse current synchronized w/ beam
- Made of Aluminum alloy (A6061)

Horn design & test status

T.Kobayashi (KEK)

Cross section: 2.2m(W)x2.8m(H)

- Cover Off Axis angle : 2°~3°
- Square box shape made with water cooled iron plates (T<60°C)
- Filled by 1atm Helium gas
- Construction started
 - Crossing 50m part w/ 3NBT by June 15, 2005
- Remaining part in 2007&2008

3.0m(W)x4.6m(H)

Decay pipe construction

Feb. 9, 2005

T.Kobayashi (KEK)

Decay volume Apr. 5

Schedule

			2	004		2005					2006					2007				2008				2009			
			1st yr				2nd yr				3rd yr					4th yr				Last yr				H21			
		4	7	10	1	4	7	10	1	4	-	7	10	1	4	7	10	1	4	7	1() 1		4	7	10	1
Facility Final Design																											
Primary line	Primary Beam Tunnel																										
	NC mag (Prep. Sect.)						lin <mark>stallaltio</mark> n																				
	1st Util. Build.(NU1)																										
	Installation Build.(NC)															000000000000000000000000000000000000000											
	2nd Util. Build.(NU2)																										
	50GeV Beam Comm.																										
	SC/FF NC mags																			In <mark>st</mark> a	llatic	n (Corr	ım.			
	Cryogenics																		In	sta <mark>lla</mark>	ltion	Co	mn	1 .			
	Intrlock/Ctrl																			In	st./te	sting	J				
Secondary line	Decay Volume I																										
	TS (underground)																										
	TS building																										
	TS instrumentation																			Insta	llatic	n					
	Target & Horns				7														In	st./A	lign/T	est o	ope.				
	Decay Volume II				Χ																						
	Beam dump Civil		N																								
	Beam dump Instrum.			Y	vv															ln\$t.	/Test	ope.					
	3rd Util. Build.(NU3)																										
	280m Hole/build.																			Inst.	/Test	ope.					
	280m utility																										

- Construction takes 5 yrs (2004~2008JFY)
- Experiment start in 2009JFY

Summary

- T2K Experiment
 - High sensitivity superbeam experiment
 - Narrow, intense beam with Off-axis technique
 - Physics goals
 - $\Box v_{e}$ appearance: sin²2 θ_{13} > 0.006 (90%CL)
 - $\Box v_{\mu}$ disappearance: $\delta(\Delta m_{23}^2) \sim 10^{-4} eV^2$, $\delta(sin^2 2\theta_{23}) \sim 1\%$
 - Search for CPV(phase 2): δ>~20deg
- Neutrino beam line construction started
- Intensive R&D and design work of beam line components
- Start experiment in 2009