NNN05 workshop,

Aussois, Savoie, France, April 2005

Neutrino oscillation studies with atmospheric neutrinos in Hyper-Kamiokande

- sub-dominant osc. in atm. neutrino exp's -

Takaaki Kajita ICRR, Univ. of Tokyo Work done with S.Nakayama, Y.Obayashi, K.Okumura, M.Shiozawa

Outline 0

- Introduction
- $sin^2\theta_{13}$?
- Sign of Δm_{23}^2 ?
- θ₂₃ >π/4 or <π/4 ? (including solar oscillation terms)
- CP phase measurement ?
- Summary

Detector and assumption

Detector: Hyper-Kamiokande

The performance of the Hyper-K detector is assumed to be

identical to Super-K.

Binning for this analysis (= 3flavor analysis in SK)

Statistical significance for non-zero θ_{13}

Importance of $s^2\theta_{23}$ >0.5; S.Pascoli et al., hepph/0305152

450 kton • yr = 0.8yr HK Δm_{23}^2 ; positive assumed

 $(\Delta \chi^2 \text{ is approximately})$ proportional to the exposure)

If Δm_{23}^2 is positive, resonance for neutrinos If Δm_{23}^2 is negative, resonance for anti-neutrinos

Sign of Δm^2 ?

 $\Delta m^2 = 0.002 eV^2$

 $s^2 \theta_{23} = 0.5$

 $s^2 \theta_{13} = 0.05$

(0.45 Mtonyr)

→ discrimination between $\theta_{23} > \pi/4$ and $<\pi/4$ might be possible.

Expected oscillation with solar terms (2)

 $s^{2}2\theta_{12}=0.825$ $\Delta m^{2}{}_{12}=8.3 \times 10^{-5}$ $\Delta m^{2}{}_{23}=2.5 \times 10^{-3}$ (always assumed later in this talk)

Effect of the solar term to sub-GeV e-like zenith angle $\Delta m_{12}^2 = 8.3 \times 10^{-5} \text{ eV}^2$ $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$

(Much smaller and opposite effect for μ -like events.) μ/e ratio @low energy is useful to discriminate $\theta_{23} > \pi/4$ and $<\pi/4$.

Discrimination between $\theta_{23} > \pi/4$ and $<\pi/4$ with the (12) and (13) terms s^{2}\theta_{23}=0.40 ~ 0.60

Effect of δ_{CP} in atmospheric neutrino data

CP phase could be seen if θ_{13} is close to the CHOOZ limit.

- The present Monte Carlo study suggests that the future atmospheric neutrino experiments with very high statistics will be very interesting, if θ_{13} is large enough.
- For large θ₁₃, atmospheric neutrino experiments with > 2 Mtonyr exposure will;
 - → discriminate the mass hierarchy
 - → discriminate between $\theta_{23} > \pi/4$ and $<\pi/4$ (if sin²2 θ_{23} is smaller than 0.99) (if sin²2 θ_{23} is about 0.96 or smaller, the discrimination is possible even if $\theta_{13}=0$)
 - →give some information on the CP phase

End