**Development of New Large-Area Photosensors in the USA** 

**@BURLE – classical PMTs (separate talk)** 

**@UC Davis:** 

(1) ReFerence Flat Panels for mass production(2) Light Amplifiers (flat and spherical)

**Daniel Ferenc** 

**University of California Davis** 

## Development of Novel Photosensors at UC Davis

**Daniel Ferenc** 

**Eckart Lorenz** 

**Daniel Kranich (Feodor Lynen Fellow)** 

**Alvin Laille (Graduate Student)** 

John Thomson and David Hemmer (UHV technicians)

**Physics Department, University of California Davis** 

- 1. The Motivation
- 2. Problem #1: Mr. Liouville → Irreducible Illuminated Area
- 3. Problem #2: Industrial Mass-Production Needs a REAL MARKET (not only physics)
- 4. Solutions

**ReFerence Flat-Panel Photosensor** 

The Light Amplifier Concept (flat and spherical)

**New Markets** 



# Future projects to study very rare phenomena

- <u>Proton decay, Neutrino Physics and Astrophysics</u>
  UNO, MEMPHIS, HYPER-K, Kilometer-Cube, also deepsea Nestor, Nemo, Antares, etc.
- <u>Gamma-ray Astronomy</u> a study of faint and/or variable sources requires telescopes with

low detection threshold <u>& wide acceptance angle (huge</u> <u>photosensor area)</u>

- <u>Ultra-high energy cosmic rays</u> (>10<sup>19</sup> eV)
- Double beta decay

2000-2004:

Advanced Detector Research Award DOE/HEP:

"Novel Highly Sensitive Photosensor Technology for Inexpensive Large Area Cherenkov Detectors"

~\$350,000

2002-2003:

**Purchased >\$2M equipment from the** *Candescent FE* **flat-panel TV factory** 

2004:

Purchased a production unit (exhaust station) for 18-mm night-vision image intensifiers (Gen-2), with the MANUAL (Litton Co.)

**NEW 2004-2007:** 

National Nuclear Security Administration (NNSA/DOE),

**Office of Nonproliferation Research and Engineering:** 

"Development of ReFerence Flat-Panel Photosensors for Novel Super-Large-Area Radiation Detectors"

\$750,000

#### **Few Remarks on Nuclear Terror**

- Explosion of real nuclear weapons in big cities an expected event
- Leakage of
  - Weapon-grade fissile materials
  - Nuclear bomb technology
- ~1994: a real nuclear bomb may be created from <u>Reactor-</u> <u>Grade Plutonium</u>
- **PROBLEM:** N-Bombs are only weakly radioactive
- → Large-Scale monitoring is needed, with simple, pixelized, <u>mass-produced super-large-area</u> radiation detectors

(passive detection; neutron-activation; muon tracking)



#### **Several unconventional photosensor concepts**

- Flat-Panel "*ReFerence*" Camera Concept (Patented)
- *"Light Amplifier"* concept, development just started
  - SMART PMT (Phillips) → modified configuration
  - **ReFerence panels**  $\rightarrow$  **scintillator** (fiber) readout
- *"SIMPLE"* Imaging Camera Concept, project idling, for EUSO, OWL, but also ground-based applications Patent Pending, project pending

• Deep-Sea Photosensor (a new idea, but have no time...)

#### **The Unbeatable Reality of Mr. Liouville**







#### **OBJECTIVES**

### **1. Large Photosensor Area Coverage**

- High Quantity
- High Quality
- Low Price

## Industrial Mass Production

# 2. High Detection Efficiency and S/N (collection and quantum efficiency)

#### **OBJECTIVES**

**1. Large Photosensor Are** 

- High Quantity
- High Quality AC

• Low P

LREAD a Mass Production

gh Detection Efficiency and S/N 2.

**Semiconductor** Photosensors

→ developed very successfully

(but pixel sizes and areas far too small)

**Vacuum Photosensors** 

(suitable for large-area applications, strong area reduction) did not develop significantly since mid-1960s

#### Why?

**Because of the Vacuum?** 

#### **Development of Other Vacuum Devices**





~1960

~2000

**Price:** ~\$2,000 per m<sup>2</sup>

#### 1. Dielectric

- 2. Patterned Resister Layer
- 3. Cathode Glass
- 4. Row Metal
- 5. Emitter Array
- 6. Single Emitter Cone & Gate Hole
- 7. Column Metal
- 8. Focusing Grid
- 9. Wall
- 10. Phosphor
- 11. Black Matrix
- 12. Aluminum Layer
- 13. Pixel On
- 14. Faceplate Glass





#### Flat Panel Camera – wishful thinking:



**Reflection-Mode Photocathode** 



#### Problem #2 – Mechanical Stability (flat plates need supports)



## Flat-Panel Pixelized <u>Camera</u> Configuration →

## provided by the *ReFerence* Photosensor Concept



**Optimal Electron Lens** 

#### **Very Important: Hexagonal Packing**





## Flat-Panel Honeycomb Sandwich Camera Construction



**Industrial Production (no glass blowing etc.) Intrinsic Mechanical Stability, Low Buoyancy,..** 



#### 3<sup>rd</sup> ReFerence Prototype



3" diameter, single pixel (successfully tested – see below)







### Strong signal concentration, factor ~ 1500 (one of our goals)

#### Replaces the entire Dynode Column! Provides ~100% Collection Efficiency!

- APD
- Scintillator + Fiber (both of small and comparable diameter transmission efficiency)

#### **From Tubes to Large Flat Panels**





#### *ReFerence* Panel Prototype (under construction)







#### Currently Aluminum – ultimately GLASS







#### **Sb** evaporator

#### Cs, Na, K dispensers

#### Photocurrent monitor

#### Cs, Na, K dispensers

#### **Reflection Mode vs. Transmission Mode**



Wavelength



NOV. 1998

#### PHOTOMULTIPLIER TUBE R7517

#### High Q.E., Bialkali Photocathode 28mm (1-1/8 Inch) Diameter, 9-Stage, Side-On Type

#### FEATURES

| Spectral Response                 | 185 to 760 nm    |
|-----------------------------------|------------------|
| High Cathode Sensitivity          |                  |
| Luminous                          | 160 μA/Im Typ.   |
| Radiant at 420nm                  | 105 mA/W Tvp.    |
| Quantum Efficiency at 220nm       | 40% Typ.         |
| High Anode Sensitivity (at 1000V) |                  |
| Luminous                          | 1600A/Im Typ.    |
| Radiant at 420nm 10.5             | 5 × 10⁵ A/W Typ. |

#### APPLICATIONS

Fluorescence Spectrophotometers

Fluorescence Immuno Assay

SO<sub>2</sub> Monitor (UV Fluorescence)



~=..== . .

#### Photocathode Cooling - Diminished Dark Current



#### **VERY EFFICIENT MAGNETIC SHIELDING**





e.g. UNO with Magnetic Field (???)

#### "Light Amplifier" Concept



determined outside !!

READOUT ->





#### **SMART PMT, QUASAR**





#### **SUMMARY**

- The goal: Inexpensive Industrial Mass Production (<\$2000 per sq. meter)
- Large New REAL Markets (not physics), we are funded already for/from one of those
- Fully functional 7-pixel prototype in 2-3 months (to demonstrate the panel concept, not yet for excellent performance)
- All-glass industrial prototypes ~by the end of 2005