Physics Motivations for the

Next Generation of Nucleon Decay and Neutrino Detectors

NNN05, Aussois, John Ellis, April 7th 2004 Next Generation of Particle Physics Experiments

Collider Experiments e.g., LHC, ILC Non-Collider Accelerator Experiments e.g., LBL v

Non-Accelerator Experiments e.g., N decay

Ironies of History

- Fame often comes in unexpected ways
- True both of accelerators and non-accelerator experiments
- Bevatron: antiproton \rightarrow resonances
- SPS: fixed-target \rightarrow collider: W, Z
- Kamiokande & Super-Kamiokande: Nucleon decay \rightarrow SN 1987a, v oscillations

Baryon Decay

Still very much on the theoretical agenda Grand Unification hinted by accelerator data on gauge couplings, supersymmetry Supported by v physics Baryon decay is

the guts of GUTs

Traditional GUT Models

- Only group of rank 4 with suitable complex representations 10 + 5*: SU(5)
- Only suitable group of rank 5 is: SO(10)
- Each generation in irreducible $16 = 10 + 5^* + 1$ of SU(5)
- Next step is rank 6: E_6 has suitable complex 27 = 16 · 10 + 1 f SO(10)

Appears in String theory Suitable for right-handed neutrino

Baryon Decay in Minimal SU(5)

- Exchanges of new X, Y bosons:
 - $\left(\epsilon_{ijk} u_{R_k} \gamma_\mu u_{L_j} \right) \quad \frac{g_X^2}{8m_Y^2} \quad \left(2e_R \ \gamma^\mu \ d_{L_i} + e_L \ \gamma^\mu \ d_{R_i} \right)$ $(\epsilon_{ijk} u_{R_k} \gamma_{\mu} d_{L_j}) \quad \frac{g_Y^2}{8m_Y^2} \quad (\nu_L \ \gamma^{\mu} \ d_{R_i}) , \qquad \qquad G_X \equiv \frac{g_X^2}{8m_X^2} \simeq G_Y \equiv \frac{g_Y^2}{8m_Y^2} .$
- Proton decay rate $\Gamma_B = cG_X^2 m_p^5$ lifetime: $\tau_p = \frac{1}{c} \frac{m_X^4}{m_p^5}$ Preferred modes: $p \to e^+ \pi^0$, $e^+ \omega$, $\bar{\nu} \pi^+$, $\mu^+ K^0$, ... $n \to e^+ \pi^-$, $e^+ \rho^-$, $\bar{\nu} \pi^0$, ...
- Estimate of X, Y masses: $m_X \simeq (1 \text{ to } 2) \times 10^{15} \times \Lambda_{QCD}$
- Lifetime too short:

 $\tau(p \to e^+\pi^0) \simeq 2 \times 10^{31\pm1} \times \left(\frac{\Lambda_{QCD}}{400 \text{ MeV}}\right)^4 \quad y \text{ exp't: } \tau(p \to e^+\pi^0) > 1.6 \times 10^{33} \text{ y}$

Proton Decay in Supersymmetric SU(5)

- Increase in GUT scale:
 - $m_X \simeq 10^{16} {
 m ~GeV}$
- X, Y exchanges OK
- Beware GUT Higgsinos: $()^2 c^2)$ 1

$$G_X \to \mathcal{O} \left(\frac{\lambda^2 g^2}{16\pi^2} \right) \frac{1}{m_{\tilde{H}_3} \tilde{m}}$$

• Preferred decay modes:

$$p \to \overline{\nu}K^+$$
, $n \to \overline{\nu}K^0$, ...

- Lifetime too short?
- Suppressed in some models

Stringy GUTs?

 First: compactify E₈ × E₈ heterotic string on complex 'Calabi-Yau' manifold:

> Gauge group = subgroup of E_6 No Higgses to break GUT group

- Second: replace manifold by fermions still no GUT Higgses
- Can construct pseudo-GUT: 'flipped' SU(5) × U(1): $e \leftrightarrow v, u \leftrightarrow d$
- Does not need large GUT Higgs representations

Supersymmetric Parameter Space

Proton Lifetime in Flipped SU(5) \times U(1)

JE + Nanopoulos + Walker

Proton Decay in 'Flipped' $SU(5) \times U(1)$

- Similar modes to conventional SU(5): different branching ratios, no Higgsino exchange
- SU(3) and SU(2) unify below usual GUT scale

• Enhanced rate in strongly-coupled M theory

Lifetime accessible to Experiment?

JE + Nanopoulos + Walker

The High-Proton-Intensity Frontier

- Exploration and understanding
 - Novel phenomena
 - Rare processes
 - High statistics
- Active option in front-line physics: factories for Z, B, t/Charm, K, antiproton, anti-Hydrogen
 Proton driver → new opportunities for v, muon, kaon, nuclear physics

Ideas about v masses and mixing

Neutrino Physics

- v oscillations first evidence for physics beyond the Standard Model
- Still unknown parameters: mixing angle Θ₁₃ CP-violating phase δ Sign of Δm²

Many other parameters in minimal seesaw model Total of 18: responsible for leptogenesis?
Some accessible in rare muon processes

Agenda for Future v Experiments

• Confirm or reject LSND

(In progress: MiniBoone)

• Measure θ_{13}

(In preparation: MINOS, Reactors, JHF....)

- Detect v_{τ} in $v_{\mu} \rightarrow v_{\tau}$ (In preparation: Opera, Icarus)
- How close to maximal is θ_{23} ? (In preparation: JHF, ...)
- Determine sign of Δm_{23}^2
- Search for CP violation
- Improve sensitivity to 0vββ
- Search for other lepton mixing/CP-violating parameters

Sensitivity to $\sin^2 2\theta_{13}$

T2K Sensitivity to 23 Mixing

v Oscillation Facilities @ CERN

- CNGS:
 - v from SPS: τ production
- Superbeam? intense v beam from SPL
- β beam?

signed electron (anti) v beams from heavy ions

• v factory?

muon and electron (anti) ν beams from μ decay

Sensitivities of Super & β Beams

Optimization of Proton Beam Energy

E _{proton} GeV	2.2	3.5	4.5	6.5			
Non-oscill.	36917	60969	73202	78024			
ν_{μ}							
Oscillated	43	60	64	61			
ν_{e}							
Intrinsic	165	222	242	288			
Beam v_e							
Background	70	105	127	148			
π^0 , μ/e mis.							
Significance	1.88	2.16	2.17	1.87			
$S/(N_{1})^{1/2}$							

 $\Delta 0$

crease in significance at higher energy: 3.5 or 4.5 GeV

ampa

lazes

Schematic Layout of β Beam @ CERN

Sensitivities of Super & B Beams

Fix γ at Maximum SPS Value: 150.

- For this γ the optimum distance is
 300 km
- The 99% CL δ reach can be improved from 15° to 10°.
- The θ_{13} sensitivity can also be improved substantially
- But no laboratory at this distance!

Combining SPL and β -Beams

 θ_{13} sensitivity

- The β -beam is more sensitive than an SPL beam.
- The β -beam only requires the SPL for 10% of its up time.
- Can therefore run an SPL beam at the SAME TIME as the β -beams.
- The combination improves over the β -beam alone.

T2K II vs β-Beam

T2K Phase II and β-beam ($\gamma = 150$) have very similar CP reach and sin² 2θ₁₃ sensitivity.

CERN Proton Driver Physics Matrix

Brent Destaura			INTEREST FOR			
accelerator	accelerator	Improvement	LHC upgrade	v physics beyond CNGS	RIB beyond ISOLDE	Physics with k and μ
Linac2	Linac4	$\begin{array}{l} 50 \rightarrow 160 \; \mathrm{MeV} \\ \mathrm{H^+} \rightarrow \mathrm{H^-} \end{array}$	+	0 (if alone)	0 (if alone)	0 (if alone)
PSB	2.2 GeV RCS* for HEP	$1.4 \rightarrow 2.2 \text{ GeV}$ $10 \rightarrow 250 \text{ kW}$	+	0 (if alone)	+	0 (if alone)
	2.2 GeV/mMW RCS*	1.4 → 2.2 GeV 0.01 → 4 MW	+	++ (super-beam, β- beam ?, v factory)	+ (too short beam pulse)	0 (if alone)
	2.2 GeV/50 Hz SPL*	1.4 → 2.2 GeV 0.01 → 4 MW	+	+++ (super-beam, β- beam, v factory)	+++	0 (if alone)
PS	SC PS*/** for HEP	26 → 50 GeV Intensity x 2	++	0 (if alone)	0	+
	5 Hz RCS*/**	$26 \rightarrow 50 \text{ GeV}$ $0.1 \rightarrow 4 \text{ MW}$	++	++ (v factory)	0	++++
SPS	1 TeV SC SPS*/**	$0.45 \rightarrow 1 \text{ TeV}$ Intensity x 2	+++	?	0	+++

Possible Upgrades of LHC

Increase luminosity – but beware of integrated radiation dose

Muon Physics

- Proton source produces many muons
- Rare μ decays $\mu \rightarrow e \gamma, \mu \rightarrow eee,$ $\mu A \rightarrow e A$

 $\begin{array}{l} BR(\mu \to e \gamma) \ < \ 1.2 \times 10^{-11} \\ BR(\mu^+ \to e^+ e^+ e^-) \ < \ 1.0 \times 10^{-12} \\ R(\mu^- Ti \to e^- Ti) \ < \ 6.1 \times 10^{-13} \end{array}$

Expected in susy seesaw model: probe unknown parameters

• Dipole moments:

 g_{μ} – 2, electric dipole moment, CPT tests

 Nuclear, condensed-matter physics: (radioactive) μ-ic atoms, muonium, μ-ic Hydrogen

Rare K Decays

Many kaons produced if high-energy source or booster ring

Possibilities @ CERN

Stage 1: 3 MeV Test Facility

In construction. To be operational in 2007.

(RFQ from CEA Saclay, 3 MeV chopping line from CERN).

Stage 2: Linac 4

180 MeV Normal-Conducting linac to be built during 2007-2010.

New injector for the CERN booster synchrotron, to improve the beam delivered to the LHC, ease operation, reach the ultimate luminosity, and increase the flux to ISOLDE.

Stage 3: SPL @ 3.5 GeV

Possible Layout of SPL at CERN

CDRS2 Parameters

Ion species	H-	
Kinetic energy	3.5	GeV
Mean current during the pulse	40 (30 ?)	mA
Mean beam power	4	MW
Pulse repetition rate	50	Hz
Pulse duration	0.57 (0.76 ?)	ms
Bunch frequency	352.2	MHz
Duty cycle during the pulse	62 (5/8)	%
rms transverse emittances	0.4	π mm mrad
Longitudinal rms emittance	0.3	π deg MeV

SPL Global Planning

RF tests in SM 18 of prototype structures* for Linac4

Milestones for β -Beam Study

<u>feb 05 start</u> of beta-beam task as a part of EURISOL design study

<u>end 05</u> confirm baseline scenario and parameter choice

end 09 beta-beam Conceptual Design Report and cost estimate

Summary

- There is a lot of life in proton decay
- A large undergound detector would also have great opportunities in v physics:

 Θ_{13} , δ , sign Δm^2_{23} , ...

 Prospective synergies with collider physics Susy ↔ proton decay, LHC upgrade
 NNN physics is great in its own right, and as complement to collider physics