

Analysis and Background Aspects in Large Water Cerenkov Detectors

Jessica Dunmore UC, Irvine

> NNN05, Aussois 8 April 2005

Outline

- T2K signal and background rates
- Water Čerenkov response model
 - Cross-sections and efficiencies
 - Neutrino energy reconstruction
 - Background rejection
- Systematic uncertainties
 - Near detector(s)
 - Fast global fit technique

T2K Experiment

Neutrino flux at Super-K

(2.5° off-axis beam from 0.75 MW, 40 GeV protons, assumes 5 years x 10²¹ POT)

Signal and Backgrounds • From off-axis v_{μ} beam at Super-K					
		Disappearance Experiment		Appearance Experiment	
Selection:		Fully contained, single-ring, µ-like events		Fully contained, single-ring, e-like (showering) no decay electron	
Signal: CCQE: $v_{1} + n \rightarrow p + u^{-}$ $v_{2} \rightarrow v_{2} + n \rightarrow p$				- e ⁻	
Backgrounds:					
	CC single $\pi: \nu_{\mu} + N \rightarrow N' + \mu^{-} + \pi$ NC: $\nu + N \rightarrow N' + \mu^{-} + \pi$			NC: $\mathbf{v} + \mathbf{N} \rightarrow \mathbf{N}' + \mathbf{v} +$	· π ⁰
	CC multi π 's: $\mathbf{v}_{\mu} + \mathbf{N} \rightarrow \mathbf{N}' + \mathbf{\mu}^{-} + \pi$ NC: $\mathbf{v} + \mathbf{N} \rightarrow \mathbf{N}' + \mathbf{v} + \pi$			Beam v _e Misidentified muons	

Reconstructing v_{μ} **Energy**

For T2K disappearance

True Neutrino Energy

(1.0,0.0025)

Interaction spectrum = Flux x Cross section x Efficiency

ν_e Appearance Background Largest background is from NC π⁰ production

The π⁰ fitter (POLfit) finds a second ring by testing: Likelihood(2γ) vs. Likelihood(1e)

Then fits direction and energy fraction of 2nd ring

Plot from S. Mine

v_e signal vs. background after π^0 fitter

(For $\Delta m^2 = 0.0025 \text{ sin}^2 2\theta_{23} = 1.0 \theta_{13} = 9^\circ$)

Before π^0 fitter: NC background ~ 40 events After π^0 fitter: NC background ~ 10 events Background estimates by

M. Fechner

Events / 5 years / 22.5 kton / 50 MeV bin 30 30 v_e Signal NC 25 25 misID µ Beam v_e 20 Total background 20 15 15 10 10 5 0.2 0.6 'n 4 2 0.2 Ω 0.8 'n 0 2 4 1.6 1.8 Reconstructed v_e Energy (GeV) Reconstructed v_e Energy (GeV)

v_e signal for varied θ_{13} values

(For $\Delta m^2 = 0.0025 \text{ sin}^2 2\theta_{23} = 1.0$)

 $(\sin^2 2\theta_{13} = 0.01)$

Systematic uncertainties

Precision measurement of θ_{23} and Δm_{23}^2 and appearance background subtraction require careful control of systematic uncertainties.

- Čerenkov detector reconstruction:
 - Energy scale (~3%)
 - Fiducial volume (~3%)
- Cross sections
 - CCQE (~10-20%)
 - Other (~20-50%)
- Flux normalization and shape
 - Hadron production model
 - Beam geometry
 - Beam v_e

Near Detector(s)

- Systematics may be controlled by using one or more near detectors.
- Fine-grained detector placed near the target.
 - Ability to measure relative amounts of CCQE and nonQE interactions
- Water Cerenkov 2km away from target.
 - Flux shape matches that at far detector.
 - Close to identical response at both near and far detectors.

Global oscillation fit

- A fit has been developed to determine oscillation parameters with the following capabilities:
 - varying systematic effects
 - inclusion of near and far detectors
 - inclusion of both signal and background
 - parameterized detector response (cross-sections, efficiency, reconstruction)

A similar approach has been used in the Super-K atmospheric neutrino oscillation analysis.

References:

Y. Ashie *et al.*, Phys.Rev.Lett.93, 101801 (2004)
G. Fogli, *et al.*, Phys. Rev D66, 053010 (2002)
Para and Szleper (hep-ex/0110001)

Example global oscillation fit

Conclusions

- Global fit of oscillation parameters including systematics, near detectors, and backgrounds is a work in progress.
- Current goals are
 - Perform sensitivity analysis for oscillation parameters using different detector configurations.
 - Determine effect of systematic uncertainties on T2K sensitivity.
- Method is not limited to Water Cerenkov detectors or to T2K-I experiment