Analysis and Background Aspects in Large Water Cerenkov Detectors

Jessica Dunmore
UC, Irvine

NNN05, Aussois
8 April 2005
Outline

• T2K signal and background rates

• Water Čerenkov response model
 – Cross-sections and efficiencies
 – Neutrino energy reconstruction
 – Background rejection

• Systematic uncertainties
 – Near detector(s)
 – Fast global fit technique
40-50 GeV protons create off-axis ν_μ beam
Neutrino flux at Super-K

(2.5° off-axis beam from 0.75 MW, 40 GeV protons, assumes 5 years x 10^{21} POT)

\[\Delta m^2 = 0.0025 \]

Unoscillated \(\nu_\mu \) flux

Oscillated \(\nu_\mu \) flux \((\sin^2 2\theta_{23} = 1.0) \)

Oscillated \(\nu_e \) flux \((\sin^2 2\theta_{13} = 0.1) \)
Signal and Backgrounds
• From off-axis ν_μ beam at Super-K

Disappearance Experiment
Selection:
Fully contained, single-ring, μ-like events

Appearance Experiment
Selection:
Fully contained, single-ring, e-like (showering) no decay electron

Signal:
CCQE: $\nu_\mu + n \rightarrow p + \mu^-$

Backgrounds:
- CC single π: $\nu_\mu + N \rightarrow N' + \mu^- + \pi$
- CC multi π’s: $\nu_\mu + N \rightarrow N' + \mu^- + \pi$
- NC: $\nu + N \rightarrow N' + \nu + \pi^0$
- Beam ν_e
- Misidentified muons
Reconstructing ν_μ Energy
For T2K disappearance

True Neutrino Energy

(1.0, 0.0025)

Interaction spectrum =
Flux \times Cross section \times Efficiency

y-axis: Events / 5 years / 22.5 kton / 50 MeV bin
ν_e Appearance Background

- Largest background is from NC π^0 production

- The π^0 fitter (POLfit) finds a second ring by testing:
 Likelihood(2γ) vs. Likelihood(1e)
 Then fits direction and energy fraction of 2^{nd} ring

Plot from S. Mine

500MeV/c π^0
true Pγ_2 = 55.5MeV/c
rec.Mπ^0 =140.4MeV/c^2
ν_e signal vs. background after π^0 fitter

(For Δm^2=0.0025 sin^22θ_{23}=1.0 θ_{13}=9°)

Before π^0 fitter:
NC background ~ 40 events

After π^0 fitter:
NC background ~ 10 events

Background estimates by M. Fechner

![Graph showing signal vs. background after π^0 fitter](image)
ν_e signal for varied θ_{13} values

(For $\Delta m^2=0.0025$ $\sin^22\theta_{23}=1.0$)

$\theta_{13}=3^\circ$

(sin$^22\theta_{13}=0.01$)
Systematic uncertainties

- Precision measurement of θ_{23} and Δm_{23}^2 and appearance background subtraction require careful control of systematic uncertainties.
 - Čerenkov detector reconstruction:
 - Energy scale ($\sim 3\%$)
 - Fiducial volume ($\sim 3\%$)
 - Cross sections
 - CCQE ($\sim 10\%-20\%$)
 - Other ($\sim 20\%-50\%$)
 - Flux normalization and shape
 - Hadron production model
 - Beam geometry
 - Beam ν_e
Near Detector(s)

• Systematics may be controlled by using one or more near detectors.

• Fine-grained detector placed near the target.
 - Ability to measure relative amounts of CCQE and nonQE interactions

• Water Cerenkov 2km away from target.
 - Flux shape matches that at far detector.
 - Close to identical response at both near and far detectors.
Global oscillation fit

- A fit has been developed to determine oscillation parameters with the following capabilities:
 - varying systematic effects
 - inclusion of near and far detectors
 - inclusion of both signal and background
 - parameterized detector response (cross-sections, efficiency, reconstruction)

A similar approach has been used in the Super-K atmospheric neutrino oscillation analysis.

References:
Para and Szleper (hep-ex/0110001)
Example global oscillation fit

$\Delta m^2 = 0.0025$

$\sin^2 2\theta_{23} = 0.95$

$\theta_{13} = 0^\circ$

Data

Prediction

Best fit Prediction

+ Systematics

Fit Δm^2

Fit $\sin^2 2\theta_{23}$

Uncertainty:

$\sim 2\%$ on Δm^2_{23}

$\sim 1.2\%$ on $\sin^2 2\theta_{23}$

Preliminary example: no inclusion of 280m detector.
Conclusions

• Global fit of oscillation parameters including systematics, near detectors, and backgrounds is a work in progress.

• Current goals are
 – Perform sensitivity analysis for oscillation parameters using different detector configurations.
 – Determine effect of systematic uncertainties on T2K sensitivity.

• Method is not limited to Water Cerenkov detectors or to T2K-I experiment