CNGS experimental program: OPERA and ICARUS

D.Duchesneau LAPP, Annecy

- Introduction
- CNGS beam-line
- OPERA experiment
- ICARUS experiment
- Conclusion

NNN05 Aussois, April 8th 2005

CNGS program:

In the CERN high energy v_{μ} beam (CNGS):

- search for v_{τ} appearance at the Gran Sasso laboratory (732 km from CERN)
 - Answer unambiguously on the origin of the v oscillations observed at the atmospheric Δm^2 scale
- search for $v_{\mu} \rightarrow v_{e}$ and put new constraints on θ_{13}

Most recent atmospheric results:

Super-Kamiokande : (hep-ex/0501064): Best fit: $\Delta m^2 = 2.1 \ 10^{-3} \text{ eV}^{-2}$ and $\sin^2 2\theta = 1.0$ $1.5 < \Delta m^2 < 3.4 \ \text{x} \ 10^{-3} \ \text{eV}^2$ at 90% CL

SK L/E analysis : PRL 93 (2004) 101801:

Best fit: $\Delta m^2 = 2.4 \ 10^{-3} \text{ eV}^{-2}$ and $\sin^2 2\theta = 1.0$ $1.9 < \Delta m^2 < 3.0 \ \text{x} \ 10^{-3} \ \text{eV}^2$ at 90% CL **CNGS**: beam optimized for v_{τ} appearance

For 1 year of CNGS operation in shared mode:

200 days/year ; $\epsilon = 55\%$

4.5 x 10¹⁹ pot/year

$\nu_{\mu}CC$ / kton	2900
$\nu_{\mu}NC$ / kton	875
$\langle E \rangle_{v} (GeV)$	17
$(v_{e} + \overline{v_{e}}) / v_{\mu}$	0.85 %
$\overline{\nu_{\mu}}$ / ν_{μ}	2.1 %
v_{τ} prompt	negligible

"Off-peak":

expect 16 v_{τ} CC/kton/year at Gran Sasso

→ OPERA: ~ 30 evts/day

Status of the project:
Civil engineering is completed (June 2003)
Hadron stopper and decay tube installed (June 2004)
Installation of the services going on until June 2005

Proton beam and target chamber installation: second semester 2005 Inner Conductor of the Horn

with the Outer Conductor

Inner Conductor of the Reflector

Delivered to CERN Feb. 2005

Work to complete by CERN

First beam to Gran Sasso in spring 2006

Experimental signature for v_{τ} appearance:

detect and identify the v_{τ} CC events

OPERA: direct observation of τ decay topology requires nuclear emulsions: ~ μ m granularity

ICARUS: v_{τ} CC events identified through kinematic criteria requires particle-ID, momentum and angular resolution large electronic bubble chamber capabilities: ~ mm granularity

Reject efficiently main topological background: charm production prompt µ at primary vertex wrong sign assignment at secondary vertex pt imbalance criteria 150 evts/kton/year Gran Sasso National Laboratory: (Italy, 120 km from Rome) Underground laboratory:

COLLABORATION

Belgium IIHE(ULB-VUB) Brussels

> Bulgaria Sofia <u>University</u>

China IHEP Beijing, Shandong

> **Croatia** Zagreb University

□ July 2000: Experiment proposal

May 2003 Start construction

Summer 2006 First beam expected

France LAPP Annecy, IPNL Lyon, LAL Orsay, IRES Strasbourg

> **Germany** Berlin, Hagen, Hamburg, Münster, Rostock

> > Israel Technion Haifa

Italy Bari, Bologna, LNF Frascati, <u>L'Aquila</u>, LNGS, Naples, Padova, Rome, Salerno

> **Japan** Aichi, Toho, Kobe, Nagoya, Utsunomiya

Russia INR Moscow, ITEP Moscow, JINR Dubna, <u>Obninsk</u>

36 groups ~ 165 physicists Switzerland Bern, Neuchâtel Turkey METU Ankara

Newcomer in 2005: Tunis group **OPERA: CERN experiment CNGS1**direct v_{τ} observation by
DONUT in 2000use photographic emulsionsdirect v_{τ} observation by
DONUT in 2000alternate emulsion films with lead sheets (ECC concept)

Modular detector: basic unit brick

10X₀ 56 Pb sheets (1mm) 57 FUJI emulsion films 1 changeable sheet

206 336 bricks are needed \rightarrow target mass: 1.8 ktons

Muon spectrometer

Bakelite RPC: 22 planes of 21 chambers 2.9 m x 1.1m copper strips

> Precision tracker 6 planes of drift tubes

•**Tube :** vertical , $\phi = 38$ mm, length 8 m , wire $\phi = 50 \ \mu m$

• **Plane:** 4 staggered layers, each with 168 tubes

•efficiency: 99.1%

• resolution: $< 300 \ \mu m$

 $\mathcal{E}_{charge}^{miss} \approx (0.1 \div 0.3)\%$ $\Delta p/p < 20\% \text{ for } p < 50 \text{ GeV}$

 $\mu Id > 95\%$ (with Target Tracker)

2004 Precision tracker:

Magnet SM1 completed June

Mass production started in January 2005 Installation: 48 modules in April 2005 48 modules in August 2005

> full size prototype module (Hamburg)

Magnet SM2 completed March 2005

Target tracker:

Plastic scintillator strips: 6.7 m x 2.5 cm x 1 cm
AMCRYS-H (Kharkov) readout by Kuraray WLS optical fibres + Hamamatsu PMT 64 channels

• X and Y planes of 256 strips

Module assembly in Strasbourg (IRES): > 60%

•Target Tracker tasks :

- trigger ($\varepsilon > 99\%$)
- brick finding: $\varepsilon_{\text{brick}} = 70-80\%$
- initiate muon tagging

Commissioning of the electronics (FE chips LAL) and DAQ (IPNL) at LNGS in progress

Target Section SM1 startedSept 2004

OPERA Hall C : september 04

Target walls: mass production going on. Rate: 2 half-walls/week

ininini e c ficture to ficture

December 04: first brick wall installed in Hall C

- Installation procedure needs optimisation
- Target installation paused
- Some modifications in support structure foreseen
- Target Installation should resume beginning of May 2005

The Bricks:

In Gran Sasso underground area: automatic Piling and packaging 2 bricks/mn \rightarrow 1 year production

Automatic Scanning: Nagoya and Europe R&D efforts

S-UTS prototype at Nagoya

Dedicated hardware Hard coded

Fast CCD camera (3 k frames/sec)Continuous movement of the X-Y stage

European station

Bari, Bern, Bologna, Lyon, Napoli, Neuchatel, Roma, Salerno

Commercial hardware Software algorithms 15 microscopes working

Scanning speed ~ 20 cm²/h/side Single side microtrack finding efficiency ~ 95% Sheet-to-sheet alignment (8 GeV/c π s) ~ 0.5 µm Angular resolution ~ 2 mrad $\nu_{\mu} \rightarrow \nu_{\tau}$ search

Exploited τ decay channels

- $\tau \rightarrow e$ "long decays"
- $\tau \rightarrow \mu$ "long decays"
- $\tau \rightarrow h$ "long decays" $\epsilon.BR = 2.8-3.5\%$
- $\tau \rightarrow e$ "short decays" $\tau \rightarrow \mu$ "short decays" $\epsilon.BR = 0.7-1\%$

Recently added: $\tau \rightarrow 3h$ long and short decays

Main backgrounds:

charm decays (64%)
large angle μ scattering (13%)
hadron reinteractions (23%)

 $v_{\mu} \rightarrow v_{\tau}$ search

full mixing, 5 years run @ 4.5x10¹⁹ pot / year

► New Brick finding strategy: eff. gain +10%

> Including the $\tau \rightarrow 3$ prongs (ϵ .BR = 1.0%): eff. gain +10%

channel	Signal (Δm^2 (eV ²))			ε.BR	Background
	1.9 10 ⁻³	$2.4 \ 10^{-3}$	3.0 10 ⁻³		
e	2.7	4.3	6.7	3.7%	0.23
μ	2.2	3.6	5.6	3.1%	0.23
h	2.4	3.8	5.9	3.3%	0.32
3h	0.7	1.1	1.7	1.0%	0.22
total	8.0	12.8	19.9	11.1%	1.00

Improvements under study

- \succ Reduction of the number of background events (~30%):
 - \Box improve π/μ id. (low p) using dE/dx vs range: reduce the charm background
 - \square New measurement of the large angle μ scattering
 - □ New estimates of the hadronic background using Chorus data

ICARUS experiment jointly approved by INFN and CERN

– CNGS2 (April 2003)

- Explicit search for $\boldsymbol{\nu}$ oscillations at the CNGS neutrino beam

25 INSTITUTIONS, 150 PHYSICISTS

ITALY: L'Aquila, LNF, LNGS, Milano, Napoli, Padova, Pavia, Pisa, CNR Torino, Pol. Milano. SWITZERLAND: ETHZ Zürich.

CHINA: Academia Sinica Beijing.

POLAND: Univ. of Silesia Katowice, Univ. of Mining and Metallurgy Krakow, Inst. of Nucl. Phys. Krakow, Jagellonian Univ. Krakow, Univ. of Technology Krakow, A.Soltan Inst. for Nucl. Studies Warszawa, Warsaw Univ., Wroclaw Univ.

USA: UCLA Los Angeles.

SPAIN: Univ. of Granada, Madrid

RUSSIA: INR Moscow

Physics program:

CNGS,

solar and atm. v, Supernova v, proton decay

ICARUS:

Principle: 3D imaging in a large volume Liquid Argon TPC

• \rightarrow 3D reconstruction with high resolution

- very pure LAr (<0.1ppb) \rightarrow electrons can drift over large distances (>1.5 m)
- scintillation light for t_0
- 3 wire planes at 0,+60,-60° with 3mm pitch

 $\sigma_z = 150 \mu m$ Electric Field PMT UV Ligh $\sigma_{xv} = 1 \text{mm}$ Ionizing Track Drifting **Energy deposition** e measured for each point (400 ns sampling) E_1 Screen Grid $V_{drift} = 1.56 \text{mm/}\mu\text{s}$ @ 0.5kV/cm dE2 Induction Plane Collection Plane

25 cm

Run 960, Event 4 Collection Left

85 cm

T600 test

ICARUS design: multi kton device in modular structure Smallest detector unit: 300 tons (T600 half-module)

1st half T600 succesfully tested during 2001 in Pavia

Validate the technology for these large scales

Detector performance:

EM and hadronic showers are identified and fully sampled

Total energy obtained from charge integration

 Excellent calorimeter with very good E resolution

EM showers:

$$\frac{\sigma(E)}{E} = \frac{3\%}{\sqrt{E}} + 1\%$$

Hadronic showers:

Pictures from T600 technical run:

Run 308, Event 160 Collection Left

Detector performance:

μ momentum measurement by MCS $\Delta p/p=20\%$ at 10 GeV

Run 975, Event 61 Collection Left

Particle identification: by means of dE/dx vs range

 $K^{+}[AB] \to \mu^{+}[BC] \to e^{+}[CD]$

ICARUS in Gran Sasso (Hall B)

gradual mass increase

Cloning T600 module to reach a sensitive mass of 2.35ktons

First Unit T600 + Auxiliary Equipment	T1200 Unit (two T600 superimposed)	T1200 Unit (two T600 superimposed)

transported to LNGS: to be installed in 2005 Should be completed by autumn 2006 money available for tendering of cryostats, inner mechanics and readout electronics: Should be completed by end of 2007 Not yet included in infrastructure design but ultimate goal: T3000+muon spectrometer

Numbers quoted: 1 year of T600 + 4 years of T1800

T600 in Hall B: March 2005

ICARUS: $v_{\mu} \rightarrow v_{\tau}$ search golden channel: $\tau \rightarrow ev_e v_{\tau}$ Kinematical suppression of the background: v_eCC from beam

- Analysis based on 3 dimensional likelihood
 - E_{visible},
 - $\mathbf{P}_{\mathrm{T}}^{\mathrm{miss}},$
 - $\Box \ \rho_l \equiv P_T^{lep} / (P_T^{lep+} P_T^{had} + P_T^{miss})$
 - Exploit correlation between variables
 - Two functions built:
 - L_{S} ([Evisible, P_{T}^{miss} , ρ_{l}]) (signal)
 - L_B ([Evisible, P_T^{miss} , ρ_l]) (v_e CC background)
 - Discrimination given by

- ICARUS: $\nu_{\mu} \rightarrow \nu_{\tau}$ search
- other channel: $\tau \rightarrow \rho \nu_{\tau}$ with $\rho^- \rightarrow \pi^- \pi^0$
- main background: $v_{\mu} \text{ NC} \rightarrow \text{missing } p_t$

use isolation criteria: Q_T

T1800 detector (1 year 0.47 kton+4 years 1.4 kton active LAr)

channel	Signal (Δm^2 (eV ²))			ε.BR	Background
	$1.6 \ 10^{-3}$	$2.5 \ 10^{-3}$	$3.0\ 10^{-3}$		
e	1.9	4.7	6.8	4.4%	0.3
ρDIS	0.3	0.8	1.1	0.8%	< 0.1
ρQE	0.3	0.7	1.0	0.7%	< 0.1
total	2.5	6.2	8.9	5.9%	0.3

5 years: 2.25x10²⁰ pot

$v_{\mu} \rightarrow v_{e}$ search: at CNGS

Assuming $\Delta m_{12}^2 \ll \Delta m_{23}^2 = \Delta m_{13}^2 = \Delta m^2$, in the 3 flavour v oscillation framework $P(v_{u} \rightarrow v_{\tau}) = \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}(1.27 \Delta m^{2} L/E)$ subleading transition ---- $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.27 \Delta m^{2} L/E)$

•look for an excess of v_e CC events and take into account $v_{\mu} \rightarrow v_{\tau}$, $\tau \rightarrow ev_{\tau}v_e$

expected signal and background 5 years: 2.25×10²⁰ pot

	θ_{13}	$\sin^2 2\theta_{13}$	Signal	$\nu_{\mu} \rightarrow$	>ντ,	$\nu_{\mu} CC$	$\frac{1}{\nu_{\mu} NC}$	v _e CC
OPERA	(deg)		$\nu_{\mu} \rightarrow \nu_{e}$	$ \tau \rightarrow$	$ev_{\tau}v_{e}$			
	9	0.095	9.3	4	.5	1.0	5.2	18
	7	0.058	5.8	4	.6	1.0	5.2	18
	5	0.030	3.0	4	.6	1.0	5.2	18
ICARUS		$\theta_{13} \sin^2$	2θ ₁₃ ν	e CC	ν _μ ->	ντ,	Signal	
11800	-	$\frac{(ucg)}{92}$ 10	000	45	$\tau \rightarrow e$	$\frac{v_{\tau}v_{e}}{4}$	$\frac{v_{\mu} - v_e}{18}$	

θ_{13}	$\sin^2 2\theta_{13}$	v _e CC	$v_{\mu} \rightarrow v \tau$,	Signal
(deg)			$\tau \rightarrow e v_{\tau} v_{e}$	$v_{\mu} \rightarrow v_{e}$
9.2	1.000	45	14	18
8	0.076	45	14	13
6	0.030	45	14	8

Conclusions

CNGS beam: on schedule \rightarrow expect to start in June 2006

OPERA: construction and installation is progressing

 \rightarrow should be ready to record v events in 2006

ICARUS: successful demonstration of the principle withT600 Hall B: T600 in 2006 + T1200 version completed end 2007 Physics with CNGS:

- $\nu_{\mu} \rightarrow \nu_{\tau}$:
 - first evidence for v_{τ} appearance signal after a few years
 - expect 20 τ events after 5 years with very small background at Δm^2 ~ 2.4 $10^{\text{-3}}\,\text{eV}^2$
- $\nu_{\mu} \rightarrow \nu_{e}$:
 - high detector capabilities to explore this channel
 - θ_{13} limit down to 6^0
 - sensistivity on θ_{13} with a dependence on δ_{CP} different from T2K

The End