Status of the MINOS experiment Next Generation of Nucleon Decay and Neutrino Detectors 8/04/2005

Mary Bishai (MINOS collaboration)

mbishai@bnl.gov

Outline

- Introduction to MINOS
- Physics sensitivities
- Status of MINOS:
 - MINOS Far Detector (FD)
 - Calibration Detector
 - NuMI beamline

commisioning

MINOS Near Detector (ND)

First beam neutrino events in FD & ND

INTRODUCTION TO NuMI/MINOS

NuMI/MINOS Concept

Fermilab's Main Injector, Illinois

120 GeV protons, 2.5×10^{13} protons/ 8 μ sec pulse, 1.9 sec rep rate.

\Rightarrow 0.25 MW

Soudan Underground Lab, Minnesota

MINOS Beam Spectrum

LE beam at 2.5×10^{20} POT/yr \Rightarrow expect 1600 events/yr in FD

MINOS ν_{μ} **Disappearance**

Spectrum ratios Allowed regions 1.5 0.004 ۵۳۲ (و۷ 00U/080 7.4×10²⁰ p.o.t 7.4×10²⁰ p.o.t 0.003 Plot ratio of yield at far 0% C.L. 0.5 0.002 det. to expected from out parameters -K. 90% C.L. ince (SI near det. 0.001 10 0.6 0.7 0.8 0.9 Neutrino energy (GeV) sin²2d 1.5 .0.004 Location and depth of dip 3C/1005C کسر (وبر) 25×10²⁰ p.o.t 25×10²⁰ p.o.t yield δm^2 and $\sin^2 2\theta$ 0.003 Assume $\delta m^2 = 0.0025$ 0.5 0.002 eV^2 , $\sin^2 2\theta = 1.0$ 0.001 0.7 0.8 0.9 Neutrino energy (GeV) sin²20

3 years at nominal intensity (top). Intensity upgrades (bottom)

Determine δm^2 to 10 % Rule out exotic oscillation models

MINOS ν_e **Appearance Sensitivity**

Detection of u_e at Δm^2_{atm} . Evidence for non-zero θ_{13}

THE FAR DETECTOR

The Far Detector

- **9** 8m imes 2.54 cm thick Fe plates
- $4.1 \text{w} \times 1 \text{d} \times 8001 \text{ cm}$ scintillator strips with WLS fiber readout. 486 layers ⇒ 5.4kTon
 - Toroidal B-field, 1.3 T at r=2m
 - Cosmic μ veto shield

Upward going muons in the FD

2.4 ns single hit timing resolution

FD Cosmic Ray Physics

Based on \sim 1yr of data:

Upward going muons - $1/\beta$ plot

$1/\beta = c \delta t/\delta s$

MC: Nuance w/Bartol '96 flux.

No-osc normalized to data.

Zenith angle distribution.

Far Detector: Moon's Shadow

Seeing the moon underground

*Have recorded 10 M cosmic muons observed shadow of moon *Angular res_improved by selecting high momenta

*****Angular res. improved by selecting high momenta muons

The Calibration Detector

COMMISIONING THE NuMI BEAMLINE

NuMI Primary Beamline

NuMI Pretarget

Measuring the Beam Profile

Measuring the Beam Position

Characteristics of NuMI Beam Position Monitors:

- Software algorithm to search
 400 μsec to find the beam.
- NuMI bunches come in 6
 batches from booster. Position
 is measured batch by batch.
- **J** Linear over 15-20 mm. 50 μ m resolution.

BPMs used to auto-steer the beam to target center

Target Region Components

Target Enclosure

6.4 x 28 mm² graphite segments. 1m long = 1.9 interaction lengths. O(10)KW beam power at 1 mm beam width. Water cooled.

Parabolic magnetic lens.

Muon and Hadron monitors

Parallel-plate ionization chambers are used to monitor hadron and muon

content of secondary beam.

Online Beam Status

Mary Bishai, BNL 21 - p.21/33

Target position scan

Use low intensity beam and scan

across target

Hadron Monitos

4500

4000

Horizontal scan (cm)

Vertical scan (mm)

Horn current scan

- Solution As horn current changes we focus different π energies. More current \Rightarrow more focusing
- Solution As target position changes we focus different energy π s. Larger target/horn separation \Rightarrow higher π energy

NuMI Beamline Performance

NuMI Protons

Wed March 23: target vacuum compromised. Cooling water in target enclosure.

Incident under investigation.

THE NEAR DETECTOR

The Near Detector

Calorimeter region

ND 1st Beam Neutrino Jan 21, '05

ND Lots and Lots of ν **s**

At 2.5×10^{13} p/spill Target is in ME position.

ND scintillator readout has 19ns resolution (same as bunch length).

Timing information is used to separate events.

ND Beam Neutrino Properties

Time difference between ND hits and beam extraction.

NuMI 18.87ns bunches come in 5 batches.

Angle between μ track direction (both rock

and contained) and beam direction:

1st FD Beam Neutrino, March 7 '05

Far Detector Beam Neutrino #2

Conclusions

- NuMI construction is now OFFICIALLY OVER
- The MINOS experiment had begun.
- Beamline commissioning is well underway. Initial design goal of 2.5×10^{13} protons/pulse and the 2 second rep. rate have been achieved separately.
- Main Injector and Booster improvements planned to increase intensity to 4×10^{13} protons/pulse with a 2 sec. rep. rate.
- Target water leak currently under investigation.
- Near and far detectors fully operational with > 90% live time.

Beam neutrinos now observed in near and far detectors.

More info on MINOS target leak

Target is being moved into workcell for further investigation.

