The SiD concept

Yannis Karyotakis LAPP Annecy / IN2P3

March 21st '05

Main ideas

An high performance detector optimized to study e⁺e⁻ collisions of 0.5 to 1 TeV

The Particle Flow resolution drives the detector design through the ECal

Integrated, optimized, hermetic detector

Cost has to be reasonably constrained

The detector concept

Excellent integrated tracking and vertexing system

Compact calorimetry

≻High magnetic field

Tracking and Vertexing

- Fully Integrated system
- Excellent pattern recognition and momentum resolution
- Robust operation

Calorimetry

>ECal Si/W

- Keep it compact
- Keep effective Molière radius small

Many channels (1-2K)on one ASICThin wafers

> HCal

≈ 4 λ : 34 × 2 cm Fe or W
RPCs, GEMs, scintillator
Glass RPCs, in simulation

Solenoid and Flux return

B=5 Tesla
Stored energy ~ 1.2 GJ
CMS solenoid sets current scale.

Feasibility study underway to at least convince ourselves that 5T can be built.

Ongoing Muon R&D on layout (flux return) and detector technologies

SiD Organization

Design Study Coordinators

J. Jaros and H. Weerts Asian and European Contact Persons H. Aihara and Y. Karyotakis

SiD Executive Committee

Design Study Coordinators SiD R&D Coordinator A. White Godfathers M. Breidenbach and J. Brau

SiD Advisory Group

SiD Executive Committee Working Group Leaders

SiD Working Groups Benchmarking (T. Barklow), Calorimetry (R. Frey, J. Repond), Forward Calorimetry, Costs (M. Breidenbach), Magnet/Flux Return, Muons, Simulation (N. Graf), Tracking (M. Demarteau, R. Partridge), Vertexing (D. Su), MDI Liaison.

Road to Snowmass

LCWS05 Settle on critical questions and goals

- April Working Groups define simulation studies and other work needed to answer critical questions by Snowmass, engage help, start work.
- May-August Working Group meetings push studies and review progress.

Monthly Advisory Group meetings push overall detector design, review sub-system progress.

Mid-June Advisory Group meeting at Fermilab. Mid-term review.

- before Snowmass Be ready with sub-system designs, based on realistic mechanical concepts, justified with simulated performance. Design tools ready. Benchmarking analyses ready.
- at Review subsystem designs and Snowmass starting point performance. Optimize overall detector. Review technologies and mechanical design and choose baselines.

Concluding remarks

Join (not exclusive) and work on SiD design

- Unique chance for the Design Study to make real headway, integrate all the subsystems into one design, optimize the overall design, debate the relevant technologies, understand the physics/detector interplay.
- Study physics performance for several key physics measurements for a variety of detector configurations (e.g. change R, change B, change z,...). Watch the errors vs costs.

http://www-sid.slac.stanford.edu http://sid.fnal.gov or http://ilc.fnal.gov