
Babar DAQ Experiences

Ideas that worked,
Ideas that were problematic …

Christopher O’Grady, SLAC
BaBar Dataflow Group leader since 2000

Babar DAQ Schematic

 n
PEP-II Timing
L1 Triggers

EMCSVT DRC IFRDCH TRG

Source Level (FCTS)

Event-Build Ethernet Switch

32 Farm Nodes (Event Level)

11

11

11

11

11

11

11

11

11

11

 4

 4

 4

 3

 4 3 5 2

 2

 4

VME Crate and ROM count
Segment and Fragment Level

 3 4

4

Control Level

File Server

DAQ System Overview

5kHz L1, 2% deadtime (we hope).
~200 CPUs (vxWorks, UNIX), ~400
fiber optic cables, GBit/100Mbit
ethernet, VME.
First 4 event buffers in front-end elex.
“Partitionable”.
About $1M in equipment.

Caveats

Opinions are mine. Others do disagree.
I don’t have perfect answers for the
problematic areas.
I was not the system designer (but
worked on the system since 1997).

Problem Area:
Control of Firmware

Version control not well done
Engineers don’t know about code archival tools.
Changing firmware sometimes harder than changing hardware!!

Chips no longer supported by new compilers and programming
tools
Old compilers/programming-tools no longer exist, or won’t run
because old license server nodes gone away. Old OS versions not
permitted because of security concerns. Old software support gone
because of corporate mergers.
=> Firmware “cast in stone” quickly compared to software.

Interestingly, firmware coding is now more like big software
coding. Hardware engineers need to learn from software
engineers.

Problem Area:
Software Coupling (I)

Software re-used by both offline and online
sometimes re-used for good reasons.
sometimes re-used for less-than-ideal reasons

time pressure at startup
Programmers unaware of the real cost of software
dependencies.

Led to coupled online/offline compilers and operating
systems. e.g. offline wanted compiler upgrade,
Dataflow didn’t need it. Not optimal. I don’t have
“the answer”, but…
Lesson: Be careful what you re-use. Keep
dependencies/interfaces SMALL. Sometimes better
to “copy the .hh” file.

Problem Area:
Software Coupling (II)

Security concerns required OS changes that
weren’t required from a performance
standpoint (although arguably were needed
from a maintenance standpoint). I don’t
have “the answer” but…
In a future DAQ system, perhaps have a
small secure entry into the online system,
allowing more freedom for rest of online?

Problem Area:
Miscellaneous

Working with GHz optical links hard.
100 BaBar boards have optical links that don’t work at spec.
Should have tested earlier with optical attenuators.

In general, not enough good test software for either
the software or hardware. Unavoidable for non
space-based experiment, because of cost?. (my
brother likes the “write your tests first” approach).
Neutron radiation and “Single Event Upsets” are a
concern at Babar.
Persistent data format was hard to change.
Got locked into the mechanical format of a particular
Single Board Computer.

Problem Area:
Use of UDP and Multicast

Can’t tolerate packet loss (biases physics).
Since not widely used for reliable data
transfer, some tricky intermittent failures:

Different network drivers had different buffering,
creating drops
Some drops hard to understand (e.g. crossing
switch backplanes).
100Mbit switch modules dropping multicasts, even
when no other traffic.
Network drivers not registering reliably with NICs
for multicast groups

Success Area:
Use of UDP and Multicast

UDP is connectionless and lighter weight than TCP.
We use multicast for “control signals”: scales (up to a
point) trivially. Maybe multicast the data in future?
Registering for switch multicast groups was difficult
to do robustly.
Connectionless nature of UDP allowed use of switch
port-spanning to “secretly” test new hardware in real
data-taking situation.
VxWorks network driver too slow. UDP allowed us to
write a zero-copy Gbit ethernet driver more easily =>
big performance increase for $300 per board !!!
Forced us to learn. Would do it again.

Success Area:
Dynamic Linking

Used in VxWorks. Enabled packages to change at
their own rate.
Compiling faster, easier to manage. especially when
iteratively debugging.
Installed code base smaller.
Harder on UNIX (we almost did it):
LD_LIBRARY_PATH and path hardwired in library
difficult to control well.
Dynamic linking on VxWorks was a joy.
Would like everywhere, but would require physicists
to manage interfaces/versioning better. Perhaps
unrealistic, sadly?

Success Area:
Realtime Info to Accelerator (I)

Multicast 3 longwords on DAQ subnet every trigger
(unaffected by deadtime!):

mask of trigger bits (1 longword)
timestamp tied to accelerator clock, 16ns resolution (2
longwords)

Analyzed in various ways (including FFT) and
presented to PEP in real-time (10Hz update rate).
Can “see” individual bunches.
They tune the accelerator using this, even when
Babar is not taking data. Wealth of information (e.g.
synchrotron oscillations).
In future would do more: multicast finer granularity
trigger information.

Trigger Data for Accelerator

� � �� � �� � � � � 	 �� � �

 � �� �� �

� �� � � � �� � �� �� � � �

� � ! � "� �� � # �$

� � �& & � �� '

 (� � � � � �� �� �� � ��

) * * � �� * � �� � �� � � +

, - , "� � ./ �� �0 � �

� 1 � 1 �� � � & �� � �

 2 1 � � � � � �� � � �� �

� * � �� �4 5 �� 6 � � �

& � �� � � � " " �� �

7 89 9 :� �9 �� � � � �� 	

 � � � � 	
� �
 � � 9

� 	 � 9

� � 	 89 8 8� � 	

Time After Injection (usec)
0 20 40 60 80 100 120 140 160 180

T
ri

g
g

er
s

/ I
n

je
ct

io
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nent = 2462HER Nent = 2462

(msec)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.5

1

1.5

2

2.5

Nent = 2462HER Nent = 2462

(msec)
0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

Nent = 2462HER Nent = 2462

Time After Injection (usec)
0 20 40 60 80 100 120 140 160 180

T
ri

g
g

er
s

/ I
n

je
ct

io
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nent = 4714LER Nent = 4714

(msec)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.5

1

1.5

2

2.5

Nent = 4714LER Nent = 4714

(msec)
0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

Nent = 4714LER Nent = 4714

Frequency (kHz)
0 2 4 6 8 10 12 14

P
S

D

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

Nent = 0HER PSD Nent = 0

Frequency (kHz)
0 2 4 6 8 10 12 14

P
S

D

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

Nent = 0LER PSD Nent = 0

Bunch Number
0 500 1000 1500 2000 2500 3000

B
kg

 T
ri

g
g

er
s

0

20

40

60

80

100

120

140

160

180

200

220

Nent = 39084Stored Beam Bunches Nent = 39084

Success Area:
Real-time Info to Accelerator (II)

Only recently began delivering real-time
beamspot (position, shape) information
to accelerator with full Silicon tracking.
Again a wealth of information (e.g.
bunch-length measurements, beam-
beam interaction effects).
Should have done this sooner.

Success Area:
Miscellaneous

Event batching (to reduce effect of data transfer
overhead). We retrofitted it, would have been nice
to have it designed in more cleanly.
Test stands and real system “look the same”. Data
taking is a “special case” of calibration.
Tolerance of errors:

e.g. crashed “Level 3” node is detected and eliminated in
seconds.
e.g. events can be “damaged” with almost no impact on
DAQ performance.
Requires hard work to keep timeouts small

	Babar DAQ Experiences
	Babar DAQ Schematic
	DAQ System Overview
	Caveats
	Problem Area:�Control of Firmware
	Problem Area:�Software Coupling (I)
	Problem Area:�Software Coupling (II)
	Problem Area:�Miscellaneous
	Problem Area:�Use of UDP and Multicast
	Success Area:�Use of UDP and Multicast
	Success Area:�Dynamic Linking
	Success Area:�Realtime Info to Accelerator (I)
	Trigger Data for Accelerator
	Success Area:�Real-time Info to Accelerator (II)
	Success Area:�Miscellaneous

