A Possible Approach to the SiD Data Acquisition

David Strom – University of Oregon

- Bunch structure at the ILC
- SiD Detector
- Expected detector occupancies
- Possible common approach to on-detector DAQ
- Implication for data rates and volumes

Bunch Structure at the ILC

- Final bunch structure of cold machine not yet known
- Bunches unlikely to be closer than 150 ns (kickers)
- Total length of bunch train unlikely to be more than 1 ms (damping ring size)

LCWS 05

SiD Detector

• Cost optimization \Rightarrow small tracker and calorimeter radius (~ 1.2m)

- Tracker with 5 layers (50 μ m pitch and 10cm long detectors)
- ECAL segmentation $0.2^{\circ} \times 0.2^{\circ}$ (0.4cm/125cm) ×30
- HCAL segmenation $0.3^{\circ} \times 0.3^{\circ}$ (1.0cm/200cm) ×36

Except in forward region occupancies will be very low

Toshi Abe's (LCWS04-Victoria) warm occupancies ($\times \sim 20$ for cold)

 \Rightarrow A system with a limited number of buffers in the Front-End Electronics seems viable for most subsystems

LCWS 05

19 March 05 – David Strom – UO

• Small occupancy and 1/200 duty cycle allows for relatively low power front end systems.

• Excessive heat would require invasive cooling systems which would compromise several detector goals:

 \Rightarrow Effective calorimeter granularity would decline due larger gap size

 \Rightarrow Additional material causes conversions and multiple-scattering in the tracker

Can we get the heat out of the ECAL?

Back of the envelope calculation of change in temperature:

- Thermal Conductivity of W alloy 120W/(K-m)
- Thermal Conductivity of Cu 400W/(K-m)

Need to reduce heat to below 100mW/wafer.

Main physics impact of buffer overflow:

 \bullet If a missing energy event occurs when buffers are full it will be impossible to exclude background such as $f\bar{f}\gamma$

Suggested criterion for buffer size: In any region in θ require that 1% of buffers are full in at most 1% or all events.

LCWS 05

19 March 05 – David Strom – UO

Main implication for DAQ system:

- Except in the forward region data should time tagged and locally stored during the bunch train.
- Each bunch train should be analyzed as whole. This allows buffer overflows to be flagged.
- DAQ should be able to continuously readout detector with completely full buffers e.g. temporary bad background, but this will in general not be necessary.

Possible Common Architecture for Tracker, ECAL, HCAL

Simplified circuit of single channel (1024 channels/chip) (See M. Breidenbach's talk in Calorimetry)

- Digitize buffers during time between bunch trains
- Adjust number of buffers for detector occupancy
- Adjust charge amplifier for detector type

Data Concentrator – ECAL barrel module

- \bullet Each plane of the ECAL will have ~ 250 wafers, each with 1024/channels.
- \bullet Raw rate out of the concentrator is $\sim 150\, \text{Mbits/s}$

Estimated* maximum data volumes

Detector	Channels	Amp bits	TS bits	Buffers	Raw Size	Raw Rate
	(M)				Gbits	Gbits/s
VXD**	3300	3		1	9.9	50
	132		13	4	6.9	34
Tracker	20	8	13	16	6.8	34
ECAL	85	13	13	4	8.8	42
HCAL	40	8	13	4	3.3	16
Total					36	176

- \bullet The total raw event size for a single bunch crossing is ~ 5 GBytes, so it is possible that this could be analyzed in a single CPU at once
- \bullet In the normal case, there would be a zero suppression factor of ~ 20 or more, giving typical bunch train "event" sizes of $\sim 250\,\text{MBytes}$
- Have ignored contribution from hadron tail catcher and muon system *educated (and biased) guesses ** 10μ m × 10μ m pixels LCWS 05 11 19 March 05 – David Strom – UO

What about forward region of the detector?

• In the forward region (below about 100 milliradians) we quickly encounter high occupancies and it will probably be necessary to read everything out.

• If we keep the same segmentation as in the reset of the detector (60 longitudinal layers and 4mm \times 4mm pixels) and readout every beam crossing separately:

Detector	Channels	Amp bits	Buffers	Raw Size	Raw rate
	(M)			Gbits	Gbits/s
Forward	2	13	2820	77	383

Challenge for Data Acquisition system – how to handle such a large data rate

LCWS 05

Observations:

 \bullet Main physics need is to veto high energy (> 100 GeV) electrons, photons and muons

- Next most important physics need is the luminosity spectrum
- Solid angle below 100 mrad is probably not key for hadronic jet reconstruction
- Background from tails of low energy electromagnet showers will complicate reconstruction of low energy hadrons
- \Rightarrow MIP sensitivity and excellent energy resolution probably not needed in this region

 \Rightarrow Could use hardware processing to find quantities of interest to physics

⇒ Detector DAQ/Design work very much needed in forward area
 LCWS 05
 13
 19 March 05 - David Strom - UO

Conclusion

- "Triggerless" DAQ for a granular LC detector such as SiD looks plausible
- Occupancy in almost all of the detector is sufficiently low that for each channel only a few buffers/bunch train will be needed
- Front-end electronics could be based on a common chip design
- Main challenge will be far-forward region
 may require dedicated hardware reconstruction