2005 INTERNATIONAL Linear Collider Workshof

LCWS05

Stanford, California, USA 18-22 March, 2005

RF Kicker Update for 0mrad IR

Y. Iwashita

Accelerator Laboratory, Advanced Research Center of Beam Science, Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611-0011, JAPAN iwashita@kyticr.kuicr.kyoto-u.ac.jp http://wwwal.kuicr.kyoto-u.ac.jp

AccLab BmSci ICR KyotoUniversity Accementation LABORATORY

Advanced Resparch Center for Beam Science Institute for Chemical Resparch Kyoto University

Time Structure of Beams

http://wwwal.kuicr.kyoto-u.ac.jp/~iwashita/rfkick/RFKICKERGRA1.MOV

Sketch of a Kicker

DC+3MHz (+6~9 MHz) Variant

0.2T x 10m

Double C-type Better shielding Step at center? 2 mrad with 300 units?

Higher packing factor

increase average field

Q <1 for non-cut core Q~10 for cut core @a few mm gap

Fabricated FINEMET core (Ready 3/1, No data yet!)

Q-value with this big gap?

6MHz @ C=2nF Q?

RF core under test

Waveform 1: simple cosine $f(t) = 1 - \cos(\omega t)$

Phasing division ≥ 4 1 Section=1.0m Both end x = 0.50m $\theta_x = 2.47 \times 10^{-7}$ $< 3.0 \times 10^{-7}$ Waveform 2: two cosines $f(t) = \frac{8}{9} - \cos(\omega t) + \frac{1}{9}\cos(3\omega t)$

Phasing division ≥ 1 x = 2.0m $\theta_x = 4.65 \times 10^{-8}$ $< 3.0 \times 10^{-7}$ Very flat base. But difficult?

Phasing division ≥ 2 x = 1.0m $\theta_x = 9.54 \times 10^{-8}$ $< 3.0 \times 10^{-7}$ No DC System. Not at the center

Compensation by Phasing

- Phasing = different phase at each section.
- Apply each bottom to incoming beam
- Divide into some group

Advantage of sine option

- Can apply the harmonics separately.
- ◆ Waveform w+2w needs 2 groups
 → Separate RF's are useful for
 Easier construction & Phasing

Expansion: 500GeV→1TeV

- ◆ Kicker's location depends on the harmonics.
 → multiple kickers can distribute.
- One kicker for 500GeV
- Two kickers for 1TeV

Advantage and Disadvantage

Advantage

- Head-on collision.
- Easier than Crab Cavity (low frequency).

Disadvantage

If stopped, beam will hit the other side.
 (Failure of all the units does not likely happen.)

It may kick the incoming beam

 misplaced bunch from dark current ? –
 (unlikely to come through the FF optics, though)

$$\begin{split} f_1(-\omega\tau_k) + 2f_2(-\omega(\tau_k + \tau_c)) + f_3(-\omega(\tau_k + 2\tau_c)) &= 0\\ f_1(\omega\tau_k) + 2f_2(\omega(\tau_k + \tau_c)) + f_3(\omega(\tau_k + 2\tau_c)) &= 4\\ f_n(t) &= \sin \omega t + \alpha_n \qquad \omega\tau_k = \pi/4 \; (\lambda/8),\\ \omega\tau_c &= 3\pi/2 \; (3\lambda/4) \end{split}$$

No kick for Incoming Beam In bunch can be placed at non-kick position; no net kick even if the phase is wrong. $f_1(-\omega\tau_k + \varphi) + 2f_2(-\omega(\tau_k + \tau_c) + \varphi) + f_3(-\omega(\tau_k + 2\tau_c) + \varphi) = 0$ Out bunch does get net kicks. $f_1(\omega\tau_k) + 2f_2(\omega(\tau_k + \tau_c)) + f_3(\omega(\tau_k + 2\tau_c)) = 4$

Total length becomes long: $13\lambda/8$ (=81.25m@6MHz) \rightarrow higher freq.?

http://wwwal.kuicr.kyoto-u.ac.jp/~iwashita/rfkick/RFKICKER3.MOV

Traveling wave kicker • Further extension to the familier concept: in-beam does not match the phase velocity, while out-beam matches it (the main in-buch can be at zero-kick). Higher frequency to install many cells ~ $150MHz (3\lambda/4=1.5m)?$

http://wwwal.kuicr.kyoto-u.ac.jp/~iwashita/rfkick/TW.MOV

Issues on RF kicker

Single kicker:

- Seek for material for kicker core (FINEMET?)
- Q-values at large gap? (electrical)
- Vertical kick by fringing field? (mechanical)
- Beam chamber has to be made of insulator.
 <Shield by thin metal(copper)?>
- Abort kicker (MPS)
- Chain of kickers with higher frequency? (similar to crab cavity)

– Announcement – NANOBEAM 2005

36th ICFA Advanced Beam Dynamics Workshop

October 17-21, 2005 Uji Campus, Kyoto University

http://wwwal.kuicr.kyoto-u.ac.jp/nanobm