LCWS 2005 SLAC, March 19

Low Angle Bhabha Events and Electron Veto. Comparison Between Different Crossing Angle Designs

Vladimir Drugakov NC PHEP, Minsk/DESY Andrey Elagin JINR, Dubna

Bhabha scattering:

- $e^+ + e^- \rightarrow e^+ + e^- + (n\gamma)$
- $\partial \sigma / \partial \theta \sim 1 / \theta^3 \rightarrow$ high probability at very small angles
 - BeamCal is the most hit sub-detector

Veto rate:

- incomplete reconstructed events will be vetoed

Incomplete reconstruction:

- kinematics, i.e. $\gamma\text{-radiation}$ deflects particles
- reconstruction problem on top of the beamstrahlung remnants

Study:

 Impact of Bhabha events on the veto rate for different crossing angles

Bhabha scattering:

- $e^+ + e^- \rightarrow e^+ + e^- + (n\gamma)$
- $\partial\sigma/\partial\theta \sim 1/\theta^3 \rightarrow$ high probability at very small angles
 - BeamCal is the most hit sub-detector

Veto rate:

- incomplete reconstructed events will be vetoed

Incomplete reconstruction:

- kinematics, i.e. $\gamma\text{-radiation}$ deflects particles
- reconstruction problem on top of the beamstrahlung remnants

Study:

 Impact of bhabha events on veto rate for different crossing angles

New Particle Searches

The Physics: smuon pair production Signature: $\mu^+ \mu^- + \text{missing energy}$ $\sigma \sim 10^2$ fb (SPS1a)

The Background: two-photon events Signature: $\mu^{+} \mu^{-}$ + missing energy (if electrons are not tagged) $\sigma \sim 10^{6}$ fb

i.e. mimic two-photon event \rightarrow to be vetoed

Bhabha scattering:

- $e^+ + e^- \rightarrow e^+ + e^- + (n\gamma)$
- $\partial\sigma/\partial\theta \sim 1/\theta^3 \rightarrow$ high probability at very small angles
 - = BeamCal is the most hit sub-detector

Veto rate:

- incomplete reconstructed events will be vetoed

Incomplete reconstruction:

- kinematics, i.e. γ -radiation deflects particles
- reconstruction problem on top of the beamstrahlung remnants

Study:

 Impact of bhabha events on veto rate for different crossing angles

Beamstrahlung remnants. Pairs

BeamCal will be hit by beamstrahlung remnants carrying about 20 TeV of energy per bunch crossing.

Bhabha scattering:

- $e^+ + e^- \rightarrow e^+ + e^- + (n\gamma)$
- $\partial\sigma/\partial\theta \sim 1/\theta^3 \rightarrow$ high probability at very small angles
 - = BeamCal is the most hit sub-detector

Veto rate:

- incomplete reconstructed events will be vetoed

Incomplete reconstruction:

- kinematics, i.e. $\gamma\text{-radiation}$ deflects particles
- reconstruction problem on top of the beamstrahlung remnants

Study:

 impact of bhabha events on veto rate for different crossing angles

Geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Geometry

X-angle, mrad	0	2	20
blind area	_	-	+
L, CM		370	
Rmin, cm	1.5	2	2
Rmax, cm		10	

Benchmark geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Bhabha generation

200

Energy IGevi

200

Energy [GeV]

- 1 particle in BCal

Benchmark geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Benchmark geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Benchmark geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Electron Recognition Efficiency $--\sqrt{s} = 500 \text{GeV}$

Fake rate is less then 1%

Recognition efficiency are parametrized as function of:

- electron energy
- pairs energy density

Geometry:

- 3 designs

Generation:

- BHLUMI + TEEGG

4-momenta recalculation:

- Lorentz boost for finite X-angle designs

Tracking in magnetic field:

- GEANT4

Detection efficiency for each particle:

- parametrization routines

- lost
- incomplete reconstruction \equiv veto
- full reconstruction

Results

Note:

- Energy cut = 150GeV
- energy resolution is not included

Conclusions:

- appreciable contribution to veto rate
- 2 mrad scheme: insignificant rise
- 20 mrad scheme: rise by a factor of 2