# Energy flow comparison between 20 mrad and 2 mrad crossings

Takashi Maruyama SLAC

LCWS 2005 Stanford March 18-22, 2005

#### Introduction

- 20 mrad and 2 mrad crossing schemes are being developed.
- New ILC beam parameters have been released.
- Compare two crossing schemes in terms of the detector background.
- I dentify potential problems and feedback to the design.

#### Background sources

- Disrupted primary beam
- Beamstrahlung photons
- Radiative Bhabhas
  - 320 K / BX
  - <E> = 196 GeV
- Beam-beam pairs
  - 76 K / BX
  - <E> = 2.5 GeV
- Synchrotron radiations

Beam parameters: ILC 500 GeV Nominal

#### Two Crossing Angle Schemes with SiD Detector

20 mrad

2 mrad



Interaction simulation and particle tracking in Geant 3

### 2 mrad extraction







No beam loss

- Disrupted beam
- Beamstrahlung

### 20 mrad extraction



#### Radiative Bhabhas in 2 mrad



|     | $\langle E \rangle$ (GeV) | # loss/bx* | Power (mW)* | 20 n |
|-----|---------------------------|------------|-------------|------|
| QD0 | 30                        | 8500       | 580         |      |
| SD0 | 60                        | 340        | 45          |      |
| QF1 | 58                        | 58         | 8           |      |

#### Radiative Bhabhas in 20 mrad



|         | $\langle E \rangle$ (GeV) | # loss/bx | Power (mW) |
|---------|---------------------------|-----------|------------|
| BeamCal | 5                         | 1380      | 16         |
| QFEX1   | 13                        | 1040      | 31         |
| QFEX2   | 31                        | 4270      | 300        |



#### Pairs in 2 mrad



|         | $\langle E \rangle$ (GeV) | # loss/bx | Power (mW) |
|---------|---------------------------|-----------|------------|
| BeamCal | 2.0                       | 6000      | 27         |
| QD0     | 2.3                       | 28400     | 146        |
| SD0     | 25                        | 230       | 13         |
| QF1     | 48                        | 140       | 15         |

#### Pairs in 20 mrad



|         | $\langle E \rangle$ (GeV) | # loss/bx | Power (mW) |
|---------|---------------------------|-----------|------------|
| BeamCal | 0.8                       | 32000     | 58         |
| QFEX1   | 9                         | 3200      | 61         |
| QFEX2   | 31                        | 390       | 27         |

# Synchrotron radiation from beam halo in 2 mrad

Disrupted beam with sync photons

Sync radiations hit the face of QF1



#### Sync radiations in 2mrad crossing



- No sync radiations from beam core or disrupted beam would hit QF1.
- Sync radiations from beam halo hit QF1.

| QD0   | upstream QD0                      |
|-------|-----------------------------------|
| 10.   | 5.7                               |
| 23    | 9.                                |
| 1.8   | 9.6                               |
| 0.18* | halo 0.21*f <sub>halo</sub>       |
|       | QD0<br>10.<br>23<br>1.8<br>0.18*1 |

- Photon backscattering from Z = 16 m to IP is negligible <  $10^{-7}$ 
  - f<sub>halo</sub>: halo fraction

#### Synchrotron radiation from Z=33 to 60 m



Photon absorber and beampipe need to be properly designed, but these photons do not contribute to detector background.

## Conclusions

- Energy flow seems acceptable for both crossing angle schemes.
- Disrupted beam and beamstrahlung photons can be extracted cleanly.
- QD0 in 2 mrad has energy deposition from radiative Bhabhas and pairs.
  - Need more detailed energy deposition study for SC quad.
- BeamCal has ×2 more pair energy in 20 mrad than in 2 mrad.
- Shorter L\* has an advantage in capturing low energy radiative Bhabhas and transporting them away from IR.
- Synchrotron radiations can be serious for 2 mrad, but they don't appear to contribute to the detector background