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Motivation

* Basic studies of calorimeter behavior for single
particle in simple (testbeam) configuration
- Energy resolution, linearity

- lateral/longitudinal shower profiles

|t is extremely important to understand lateral shower profile
for particle flow analysis

e Comparison with previous testbeam results
- Understand the detector responses in detalil

- Get detector effects which should be implemented in
full simulator
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Outline

 “‘Range cut” study for Geant4

e Tile-scintillator ECAL
- Energy resolution

e Strip-scintillator ECAL
- Energy resolution, linearity
- lateral / longitudinal shower profiles

e Summary and Outlook
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Range cut

 Geant4 parameter set by user

e How it works ?

- When the range of the particle for the next step
is calculated to be less than the range cut,
GEANT4 Kills the particle and deposits all of its
energy there.

- A secondary particle is not created if its range
is less than the range cut.
e 1mm by default

 Used Geant4 6.2p2

- Problem in EM process for thin material,;
Should be fixed in 7.0 patch-01 (claimed by
Geant4 team)
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Energy cuts vs. Range cuts
in scintillator

 Default range cut (1mm) seems too large

Default range cut
Energy Cuts vs. Range Cuts I
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Energy cuts vs. Range cuts
for et/e and vy

* Large difference between absorbers and active
media at larger range cuts

Default range cut Default range cut
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Energy deposits vs. Range cuts

Two configurations with
same radiation length

- 2.5mmW / 1mm Sci

- 4mm Pb / 1mm Sci

Threshold behavior seen
from ~0.3 to ~10 um
- Gap ~7.5MeV (Pb/Sci)

- More energy deposits in
absorber at higher range
cuts

- 27.5 MeV vs. 20MeV in
scintillator (Pb/Sci)
e Sum of energy deposit is
constant
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Decompose contributions from
physics effects

e Threshold effect comes Pb(4mm)/Sci(1mm)
mamly_from multiple Energy deposit in scintillator
scattering

M

- Most frequent process nergy Deposit vs. Range CutsI

* mean-free-path for
multiple scattering is
around the threshold
region

* Should set the range cut 5
~1 pum or less (limited by
CPU)

- Will try to check again
with 7.0p1 0

N w
ol (=]

Energy Deposit (MeV)
N
o

10

5

10° 10° 10" 10° 10 ran 10é © (m }
2005,/03/21 H. Matsunaga, LCWS05 ange Cuts (mgy



ECAL Energy Resolution

 4mm Pb / 1mm Sci., electron injection
¢ 16 %/ E with ~1 pm range cuts (0.3, 1, 3 um)

- Nearly expected values

Energy Resolution vs. Beam EnergyI
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Energy Resolution for various Pb

thicknesses

e Compare with testbeam results (T405 & T411 at KEK)
e Scintillator thickness is 2mm (fixed), 1 - 4 GeV electron beam
e MC results are slightly better than data

- MC does not include detector effects, e.g. photo statistics
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Scintillator-Strip ECAL

e Using 1cm-wide
scintillator strips MAPYT _

. . a1
e 2-dimensional array derfter ® ®  jeyge
- 1cm effective granularity / ‘
WLSfiber |
e 4Amm Pb + 2 X 2mm sci. \ i e
in a layer MA PMT |/ mspalaes
T !
* 24 layers (6 superlayers) g & |
e Beam tests were carried t AL
OUt at KEK in 2002 and scintillator strip
2004
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Linearity

 MC takes account for light leakages between strips,
noises, photo statistics effect, etc.

e Good agreement with data
- Even for absolute energy deposits (in ggit of MIPs)
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Energy Resolution

. . 20¢
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Longitudinal Shower Profile

* Longitudinal shower

profile agrees with Sl B
data 8
- Absolute values are 5
well reproduced BECH!

* Shower-maximum
~ 2"d superlayer

O 2 4 6 8 10 12 14 16 18
Depth (X;)
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Lateral shower profile

e |[ntroduce energy fraction

I(Xx) :

Hit-Cluster

I(x)= de'PH Y j dx ' PH

- X=X = Xyc
- X4c: Incident position
determined by drift chambers

Pulse height (MIPs)

- X;: position of i-th strip
- 1(0)=0.5 X
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Integrated lateral shower profile

e 4GeV electron (each
superlayer), MIP

 Width for 90%
containment is ~1.7cm
for 2"d superlayer
(shower maximum)

* Most MIP spread
originates from light
leakage between

adjacent strips and
cross-talks in MA-PMTs
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Smeared spread function

e GEANT3-based shower
simulation shows -
smaller width than data

- Some detector effects 10
(such as light leakage) are
not implemented in
simulation

e Smeared function using
MIP signhal spread agrees
with data very well ! 10
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RMS of lateral shower profile

Data, Simulation

e Checked RMS of hit
cluster in each
superlayer

- Implemented light

leakage and cross-talks

in simulation

e Slightly Narrower cluster
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- Narrow clusters w_jgg
- Large pulse heights gzoo P
« More detector effects? R
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Summary and outlook

Geant4

- Range cut value should be less than ~1 um

Sci-Tile calorimeter
- Energy resolution agrees with data

e Sci-Strip calorimeter
- Energy deposits and resolution are consistent with data
- Good agreement for longitudinal profile
- Lateral shower profile is almost understood

Outlook

- Study for hadrons in progress
* Need to understand hadronic processes in GEANT4
* SLAC Geant4 team provides physics list for LC
- Performance study of optional HCAL digital calorimeter
- PFA study with simple CAL detector and with full simulator
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