LC HCAL Absorber (SS vs W) and P-Flow Performance (Scintillator vs RPC) Comparisons

Steve Magill Steve Kuhlmann ANL/SLAC

Motivation

SS/W Absorbers : Single Pion Results

Analog (Scintillator) vs Digital (RPC) Detector Comparisons

P-Flow Analyses : e+e= -> Z (jets)

Summary

Motivation for Study

Can the outer radius of the HCAL be reduced?

-> make B-field volume smaller

-> saves cost of magnet coil \propto BR²

Keep 4 λ_{I} thickness of HCAL

- -> use a denser absorber than SS, i.e., W
- -> why does SD HCAL have 1 X₀ sampling?
- -> change to 0.07 λ_{I} (2 X₀) sampling in HCAL (already proposal
- to double the sampling in the last 10 ECAL layers to $1.4 \times 10^{\circ}$

Effects on PFAs, Calorimeter performance?

0.07 λ_I W -> 0.7 cm/layer 1 cm Scintillator 4 λ_I requires 55 layers -> 93.5 cm from HCAL IR to OR

.5 cm scintillator -> 66 cm from HCAL IR to OR Present SD (SS/Scin)

- 1 X₀ SS -> 2.0 cm/layer
- 1 cm Scintillator
- 4 λ_{I} requires 34 layers
- -> 102 cm from HCAL IR to OR

.5 cm scintillator -> 85 cm from HCAL IR to OR

Z jets in SS/W HCAL

Same event - different shower shape in W compared to SS?

Single 5 GeV Pion - E measurement with DHCAL

Energy measurement in calorimeter - Analog ECAL, Digital HCAL

- -> σ /mean smaller in W HCAL
- -> same behavior for analog HCAL, but smaller effect ... Why?

Single 5 GeV Pion - E_{vis} and # hits (1/3 mip thresh)

More Evis, # hits in this W HCAL than in SS -> ~45% more visible energy -> ~31% more hits

Single 5 GeV Pion - Shower Shape Analysis

SS				W					
cone	mean (GeV)	rms	σ /mean	χ2	cone	mean (GeV)	rms	σ /mean	χ2
.025	2.07	1.62	.79	10.61	.025	1.92	1.44	.78	9.36
.05	2.96	1.66	.51	4.51	.05	2.94	1.39	.41	4.29
.075	3.63	1.56	.38	2.74	.075	3.59	1.28	.31	2.42
.10	4.08	1.48	.31	2.56	.10	4.01	1.23	.25	2.35
.25	4.76	1.44	.25	2.49	.25	4.64	1.30	.23	2.70
.50	4.85	1.43	.25	2.42	.50	4.77	1.29	.23	2.50
.75	4.86	1.42	.25	2.25	.75	4.79	1.28	.23	2.41
1.00	4.87	1.42	.25	2.45	1.00	4.80	1.28	.23	2.40

Summary of Single Pion Results

Energy versus fixed cone size

-> means very similar for SS/W . . . however, the rms in the W HCAL was ~10% smaller than the SS

CAL Energy Sums

-> for analog energy sum with 1/3 mip threshold in the HCAL, sigma/mean is ~14% smaller in the W HCAL

-> for ECAL analog and HCAL digital - again, the sigma/mean was smaller in the W HCAL

-> for HCAL only when the pions deposited only mips in the ECAL, sigma/mean ~10% smaller in the W HCAL

CAL Number of Hits

-> total number of hits in the CAL, counting hits in ECAL and HCAL with a 1/3 mip threshold in the HCAL was 108 in W, 94 in SS -> in HCAL alone, 46 in W, 35 in SS (30% more in W)

More hits and visible energy -> better digital and analog E resolution
 All of the above in smaller B-field volume -> R² cost savings

Now on to PFA performance ->

e+e- -> Z (jets) - ESums, # Hits in Calorimeters

Total CAL ESum rms smaller in W HCAL-> better analog E resolution More hits in HCAL -> better digital E resolution

e+e- -> Z (jets) - PFA performance Fits

Better PFA performance with the W HCAL for conical showers ... however, simple iterative cone reconstructs smaller fraction of events* * Improve with neutral clustering?

Summary of PFA Results

HCAL Absorber Material

-> dense absorber is optimal for LC HCAL

-> single particle analog and digital E resolutions improved with W compared to SS (more hits and visible E per volume)

-> better sampling in W HCAL (7% compared to 12% of λ_T per layer)

-> PFA performance not compromised with a shorter, denser HCAL (in fact, improved!)

-> major cost savings if magnetic coil radius can be reduced -> last 10 layers of ECAL will sample at 1.4 X_0 (0.5 cm W absorber) -> using W for absorber with 2 X_0 sampling (more accurately, 0.07 λ_I sampling) improves PFA performance while reducing the coil radius

Now, compare dense W HCAL with analog (scintillator) and digital (RPC) readout modes (same depth - 4 λ_{I})

New Detector Models based on SD Design

Dense HCALs (W absorber) - 4 λ I in ~82.5 cm IR -> OR

SDFeb05 SCI HCAL 55 layers of 0.7 cm W/0.8 cm Scin. Sampling fraction ~6%

SDFeb05 RPC HCAL 55 layers of 0.7 cm W/0.8 cm RPC 1.2 mm gas gap Sampling Fraction ~0.0025%!!!

First - Calorimeter Performances Scin. - Analog Readout RPC - Digital Readout

Hard to compete with no visible energy? Not a great start, but lets continue anyway \rightarrow

Track Extrapolation Particle-flow Algorithm ANL, SLAC

1st step - Track/CAL cell association algorithm

- substitute for Cal cells (mip + ECAL shower cone + HCAL cone : reconstruct linked mip segments + iterated in E/p hits in cones)

- Analog (scin.) or digital (RPC) techniques in HCAL

2nd step - Photon Finder algorithm (currently MC photons)
- use analytic long./trans. energy profiles, ECAL shower max, etc.
3rd step - Neutral Finder algorithm (New)

 Cluster remaining CAL cells, make cluster quality cuts (# of cells, energy or density threshold, etc.)

4th step - Jet algorithm (New)

- tracks + photons + neutral clusters used as input to jet algorithm

Track/CAL Cell Association Algorithm

4099

1.7211

5.7744

4099

1.1335

6.0571

25

Resolution still slightly better in scintillator, but Track/Cell association algorithm reproduces perfect ID in both cases

Neutral Finding Algorithm

Scin. - Analog Readout

RPC - Digital Readout

Once again, very similar performance

PFA Results

Scin. - Analog Readout

Perfect PFlow -- Tracks + Perfect ID photon + Perfect ID neutral thr - PFLow Algorithm -- Tracks + Perfect ID photon + neutral Esum

6501 Perfect PFlow --- Tracks + Perfect ID photon + Perfect ID neutral til Perfect PFlow — Tracks + Perfect ID Photon + Perfect ID neutral t 650-Perfect PFA Perfect PFA PFlow Algorithm --- Tracks + Perfect ID photon + neutral Esum PFlow Algorithm --- Tracks + Perfect ID Photon + Neutral Esum 600 600-~28%/√F ~32%/√F Perfect PFlow --- Tracks + Perfect ID photon + Perfect ID neutral th Perfect PFlow - Tracks + Perfect ID Photon + Perfect ID neutral th Entries 3753 Entries 550 Mean 90.122 550-Mean: 88,861 Rms 2,9822 Rms: 3.2708 PFlow Algorithm --- Tracks + Perfect ID photon + neutral Esum 500 500-PFlow Akaorithm --- Tracks + Perfect ID Photon + Neutral Esum Entries 3753 Entries Mean 88,960 Mean: 87.974 Rms: 6.0607 450-450 Rms: 6.4193 dauss causs amplitude 541.92±12.6 400 400amplitude 531.90±12.1 mean 90 082+0 064 mean 89.004±0.065 2.6715±0.0599 siama sigma 2.9800±0.0642 4.9605 350-350 y2 · 4 3373 300 300-Too much F 250 250-Missing E 200-200 150-150 100 100-50-50 80 85 90 95 100 105 60 75 80 85 90 95 100 105 110 115 110 115 70 75 120

PFA performance is very similar (with same cuts) but reflects underlying CAL resolution - Missing/extra E from neutral Finder Algorithm

RPC - Digital Readout

Perfect PFlow -- Tracks + Perfect ID Photon + Perfect ID neutral thr - PFlow Algorithm -- Tracks + Perfect ID Photon + Neutral ESum

4099

4099

Confusion - Leftover Hits! Scin. - Analog Readout

Promising -> better use of hits in RPC? - good since there aren't that many!

RPC - Digital Readout

PFA Improvements - Neutral Clustering

DiJet Mass from PFA

Scin. – Analog Readout

AAA The Dijet Test -- PFlow Dijet Mass

RPC - Digital Readout

AAA The Dijet Test -- PFlow Dijet Mass

Summary

For LC Detector, HCAL should be as dense as possible
-> more λ_I per cm - smaller Solenoid B-field volume
-> more layers for fixed total λ_I HCAL - better resolution since
more sampling
-> more hits - better digital resolution
-> more visible E - better analog resolution

Comparing W and SS absorbers, hadron showers appear to be smaller (rms of E distribution) in W -> results in improvement of PFA analysis

Beginning systematic studies of readout modes, absorber types and thickness for HCAL using flexibility of XML detector geometry description - should result in optimization of *both the LC Calorimeter and its associated PFA analysis method*.

W Absorber HCAL for Test Beam

For 95% containment of a 5(10) GeV pion shower : $R\pi(95\%) = 2(0.5 + 0.03 \text{ ln E}) \text{ in } \lambda_{I}$ $= 1.10 \lambda_{I} (1.14 \lambda_{I}) \text{ transverse to beam}$

 $L\pi(95\%) = 1.2 + 1.62 \text{ In E in } \lambda_{I}$ = 3.81 λ_{I} (4.9 λ_{I}) along beam

> So, for 0.7 cm W/0.5 cm Scintillator each layer : Need 22 cm x 22 cm transverse to beam, and 52 (67) layers along the beam HCAL standalone -> 25K (32K) 1 cm² readout channels 41 (56) layers along the beam with ECAL -> 20K (27K) readout channels

> > < ~2

For 2 cm SS/0.5 cm Scintillator each layer : Need 38 x 38 cm transverse to beam, and 32 (41) layers along the beam HCAL standalone -> 46K (59K) 1 cm² readout channels 25 (34) layers along the beam with ECAL -> 36K (49K) readout channels

Shower reconstruction by track extrapolation

Mip reconstruction :

Extrapolate track through CAL layer-by-layer Search for "Interaction Layer" -> Clean region for photons (ECAL)

Shower reconstruction : Define cones for shower in ECAL, HCAL after IL Optimize, iterating cones in E,HCAL separately (E/p test)