Individual Particle Reconstruction

Goal

- The aim is to reconstruct individual particles in the detector with high efficiency and purity.
- Recognizing individual showers in the calorimeter is the key to achieving high di-jet mass resolution.
- High segmentation favored over compensation.
- Loss of intrinsic calorimeter energy resolution is more than offset by the gain in measuring charged particle momenta.

Calorimeter Segmentation

- Highly segmented calorimeters constructed of materials which induce compact shower size are necessary.
- Si-W default for electromagnetic calorimeter.
- Tungsten also being investigated for HCal
 more compact design reduces cost of coil
- Need high segmentation to minimize the number of cells receiving energy deposits from more than one initial particle.

Occupancy Event Display

• Cells containing energy from more than one MC particle:

• Seems not to be a problem, even in busy events.

Clustering

- Two clustering algorithms available in current code release
 - <u>"Nearest"-Neighbor</u>, with user-defined domains available in longitudinal and two transverse dimensions.
 - (1,0,0) is simplest MIP-cluster finder.
 - Fixed-Cone algorithm (θ, ϕ)
 - fast, seed-based, but iterative centering
 - cluster splitting for overlapping cones.
- <u>Cluster</u> interface defined, so additional clustering algorithms are easily accommodated.

Simple Cluster Builder

• Clusters color coded:

 (1,1,1) Nearest-Neighbor clustering algorithm performs quite well in the silicon-tungsten detector.

Track Finding and Fitting

- Nick Sinev has released standalone pattern recognition code for the 2D Barrel VXD hits.
 - High efficiency, even in presence of backgrounds.
 - Efficient at low momentum.
 - Propagates tracks into Central Tracker to pick up ϕ hits
- Conformal-mapping pattern recognition also available. Fast, but not yet tuned (97% vs 99+%).
- Work also ongoing to find MIP stubs in Cal and propagate inwards (Kansas State, Iowa).

Strategy I

- Begin by finding and fitting tracks.
 - (In following plots, used FastMC to smear tracks to decouple the two tasks, viz. I *assume* highly efficient track finding.)
- Cluster the calorimeter cells in in EM, HAD & MUON independently using SimpleClusterBuilder.
 - $EM \rightarrow$ photons & electrons +muon MIPs +others
 - HAD \rightarrow hadrons + muon MIPS
 - MUON \rightarrow muon MIPS (+punchthrough)

Strategy II

- Propagate tracks through the calorimeters and associate clusters to the track if trajectory intersects calorimeter cell in cluster.
 - Tracks associated to EM clusters and good match between cluster energy & track momentum become electron candidates.
 - Tracks associated with clusters in EM, HAD and MUON become muon candidates.
 - Remainder become pion candidates.
- Remove clusters from the event list.

Neutral Clusters

- EM Clusters unassociated with a track are photon candidates.
 - Calculate chi-squared for longitudinal shower shape.
 - Calculate shower width.
 - Clusters passing cuts become photon candidates.
 - Remove photon candidate clusters.
- Unassociated EM neutral clusters failing photon cut + HAD clusters are clustered using fixed cone algorithm.
- These become neutron (K^0_L) candidates.

Single neutron EM cluster

ļ

Single Neutron Event

EM cluster + hadron clusters, combined using a fixed-cone clustering algorithm.

ReconstructedParticles

- These ReconstructedParticles (electron, photon, pion, muon, neutron) are added back to the event.
- Can easily sum up event energy in ZPole events.
 - Width of resulting distribution is direct measure of resolution, since events generated at 91GeV.
- Run jet-finder on RP four vectors, calculate dijet invariant mass.
- Make lots of plots matching RP-MC.

Preliminary Results: Event Energy

Preliminary Results: Dijet Mass

Reconstruction Example final public class ExampleReconstruction extends Driver

add(new SmearDriver()); add(new VXDBasedReco()); add(new SimpleClusterBuilder(1,1,1)); add(new IndividualParticleReconstruction()); add(new EMClusterAnalyzer(task, eMin, chisqMax)); add(new NeutralHadronFinder(radius, seedNhitMin, nHitMin)); add(new ReconstructedParticleEventAnalyzer());

fetch and return information from the event via the process(EventHeader event) method.

Status

- Results shown were done with hep.lcd analysis code.
- Had hoped to repeat this with org.lcsim. Didn't quite make it, but fairly close.
- Expect to finish this example soon and document as a tutorial.
- Although the distributions peak, and are centered roughly at the correct place, resolutions are somewhat poor.
- Time to tune and optimize.

Summary

- Simple example of individual particle reconstruction is available within hep.lcd framework, expect org.lcsim version soon.
- Few (if any) hardcoded values for either geometries, algorithms, or cuts. These are all determined from the event detector (geometry) or arguments to object constructors (algorithm and cut values).
- Many places along the analysis chain for improvement.