ShowLib

A set of shower libraries and associated tools for the Linear Collider Detector

> Brandon Drummond Joe Izen University of Texas at Dallas 3-19-2005

www.utdallas.edu/~nijusan/ShowLib

Outline

- Brief description and purpose
- Performance results
- Implementation
- Comparison to full simulation
- Details of tweaking
- Conclusions

What is a shower library and why use them

- Pre-generated calorimeter hits
 - Showers read in from disk and placed in the event during analysis
- Pseudo-fast monte carlo
 - Faster than simulating every hit
- Geant4 like detail
 - Real hit information stored in libraries

ShowLib flowchart

What you get

- Suitable for typical lcd analysis
- Deep enough for 20k ~ 30k events
- Factor of 9 ~ 10 times faster than full simulation
- Easy to switch between full simulation and shower libraries
 - Just two user calls

Performance results

Stage	Full Sim.	ShowLib
Generation	4.0s	4.0s
Simulation	475.4m	25.7m
Search and embed	N/A	24.4m
Total	475.5m	50.1m

*Based on user time for 1000 ee -> ttbar events on 1.6GHz Athlon system

Types of showers stored

Charged	Neutral	
е	γ	
π	K∟	
K	Ks	
р	n	
	λ	

* and respective antiparticles each stored in a separate file

Energy Ranges

Pi-

2

- Based on 1000 e+e- -> ttbar events
- Full simulation in blue
- ShowLib in red

Energy Ranges cont.

K-

K-

- Based on 1000 e+e- -> ttbar events
- Full simulation in blue
- ShowLib in red

Energy Ranges cont.

- Based on 1000 e+e- -> ttbar events
- Full simulation in blue
- ShowLib in red

Library size

- Libraries produced flat in log(E) and $cos(\theta)$
- Neutrals: ~ 0.01 GeV 130 GeV
- Charged: ~ 1 GeV 130 GeV
- ~ 3 decades x 231.4 energy bins/decade
- 489.2 energy bins
- 840 theta bins ~ 0.5cm at calorimeter face
- ~580,000 showers per library (600,000)

ShowLib usage

- Drop-in addition to jas3
 - Unpack inside of jas3 directory
 - Add two user calls:

ShowerTools.LoadShowerIndex();

ShowerTools.ShowerEvent(event);

ShowLib routine sequence

- ShowerEvent is called
- Find matching shower in library
- Rotate shower in $\boldsymbol{\phi}$
- Rotate shower in θ (not done)
- Shift shower energy
- Embed shower in event

ShowLib routine sequence

- ShowerEvent is called
- Find matching shower in library
- Rotate shower in $\boldsymbol{\phi}$
- Rotate shower in θ (not done)
- Shift shower energy
- Embed shower in event

ShowLib routine sequence

- ShowerEvent is called
- Find matching shower in library
- Rotate shower in $\boldsymbol{\phi}$
- Rotate shower in θ (not done)
- Shift shower energy
- Embed shower in event

Details of shower tweaking

- Phi rotation simple due to symmetry of current detector
- Theta rotation achieved through a swim and embed technique
- "Poor man's" energy shift done by adjusting each cell the same amount for both EMC and HAD

Conclusions

- General design and implementation done
 - Need to create libraries for other detector designs
 - Useful for Snowmass?
 - Mokka version?
- Website with documentation and results at: http://www.utdallas.edu/~nijusan/ShowLib