DHCAL Prototype Construction

José Repond Argonne National Laboratory

Linear Collider Workshop Stanford University March 18 – 22, 2005

Digital Hadron Calorimeter

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone

Assumption

Confusion term is the dominant contribution to jet energy resolution

Particles in jets	Fraction of energy	Measured with	Resolution [σ^2]
Charged	65 %	Tracker	Negligible
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}
Confusion	Required	I for 30%/√E	≤ 0.24² E _{jet}

Minimize confusion term

Maximize segmentation of calorimeter readout

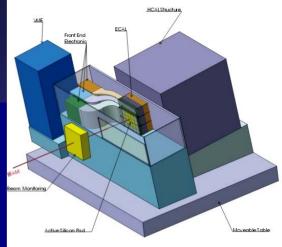
High segmentation

1 – bit resolution on readout preserves energy resolution for hadrons

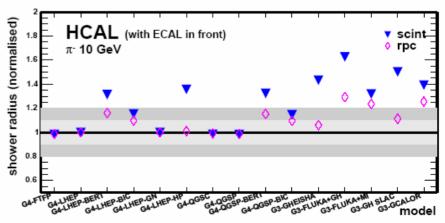
18%/√E

Technical implementation

Resistive Plate Chambers (RPCs) Gas Electron Multipliers (GEMs)


DHCAL R&D Goal

Prototype section

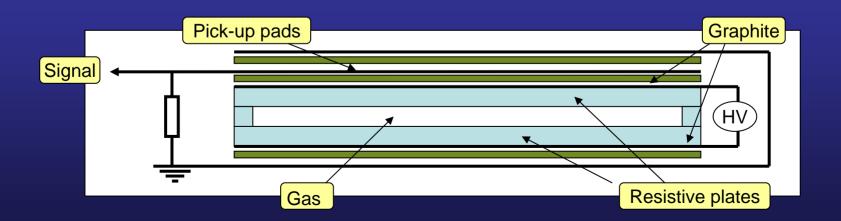

1 m³ (to contain most of hadronic showers)
40 layers with 20 mm steel plates as absorber
Lateral readout segmentation: 1 cm²
Longitudinal readout segmentation: layer-by-layer
<u>Gas Electron</u> Multipliers (GEMs) and Resistive Plate Chambers (RPCs) evaluated

Motivation for construction and beam tests

Validate RPC approach (technique and physics) Validate concept of the electronic readout Measure hadronic showers with unprecedented resolution Validate MC simulation of hadronic showers Compare with results from Analog HCAL

Comparison of hadron shower simulation codes by G Mavromanolakis

Why different active media?

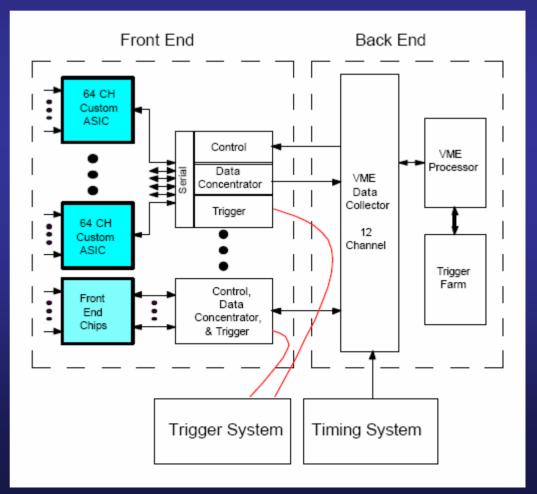

	Scintillator	GEMs	RPCs
Technology	Proven (SiPM?)	Relatively new	Relatively old
Electronic readout	Analog (multi-bit) or Semi-digital (few-bit)	Digital (single -bit)	Digital (single -bit)
Thickness (total)	~ 8mm	~8 mm	~ 8 mm
Segmentation	3 x 3 cm ²	1 x 1 cm ²	1 x 1 cm ²
Pad multiplicity for MIPs	Small cross talk	Measured at 1.27	Measured at 1.6
Sensitivity to neutrons (low energy)	Yes	Negligible	Negligible
Recharging time	Fast	Fast?	Slow (20 ms/cm ²)
Reliability	Proven	Sensitive	Proven (glass)
Calibration	Challenge	Depends on efficiency	Not a concern (high efficiency)
Assembly	Labor intensive	Relatively straight forward	Simple
Cost	Not cheap (SiPM?)	Expensive foils	Cheap

Status of DHCAL Active Detectors

Measurement	RPC Russia	RPC US	GEM
Signal characterization	yes yes		yes
HV dependence	yes	yes	ongoing
Single pad efficiencies	yes	yes	ongoing
Geometrical efficiency	yes	yes	no
Tests with different gases	yes	yes	yes
Mechanical properties	?	yes	no
Multipad efficiencies	yes	yes	ongoing
Hit multiplicities	yes	yes	ongoing
Noise rates	yes	yes	no
Rate capability	yes	yes	no
Tests in 5 T field	yes	no	no
Tests in particle beams	yes	no	no
Long term tests	ongoing	ongoing	ongoing
Design of larger chamber	yes	ongoing	ongoing
	all F	ually R&D pleted	Catching up

Default RPC chamber designs

Layer	Russia	US	
Resistive layer anode	Anode readout pads	1÷50 MΩ/□	
Glass thickness in [mm]	0.55	1.1	
Gas gap in [mm]	1.2	1.2	
Glass thickness in [mm]	0.85	1.1	
Resistive layer cathode	~1 MΩ/□	1÷50 MΩ/□	



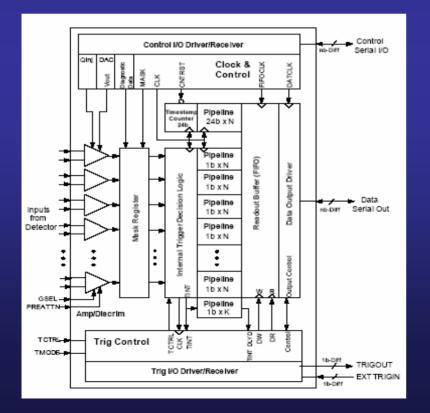
Electronic Readout System for Prototype Section

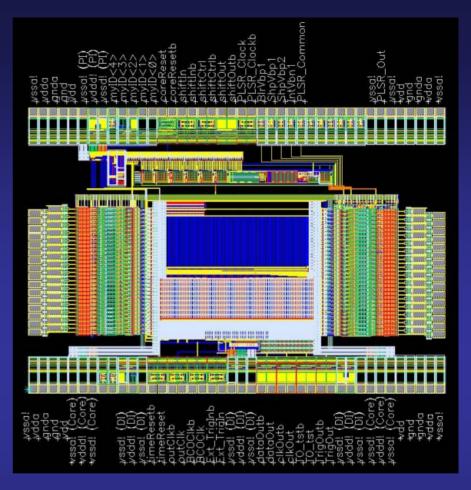
400,000 readout channels

Conceptual design of system

- I Front-end ASIC
- II Data concentrator and Superconcentrator
- III VME data collection
- IV Trigger and timing system

Common development for RPC and GEM based Digital Hadron Calorimeter


Parameter	RPCs	GEMS
Туре	Avalanche	(Gas)
Geometry	1cm x 1 cm Pads	1 cm x 1 cm Pads
Capacitance	10-100 pF	10-100 pF
Smallest Signal	~100 fC	~5 fC
Pulse Width	~5 nS	~3 nS
Rise Time	~2 nS	?
Largest Signal	~10 pC	~100 fC
Noise Rates	~0.1 Hz	?
Env. Noise Susceptibility	Low	Low


Front-end ASIC...

64 inputs with choice of input gains RPCs (streamer and avalanche), GEMs...

Triggerless or triggered operation 100 ns clock cycle

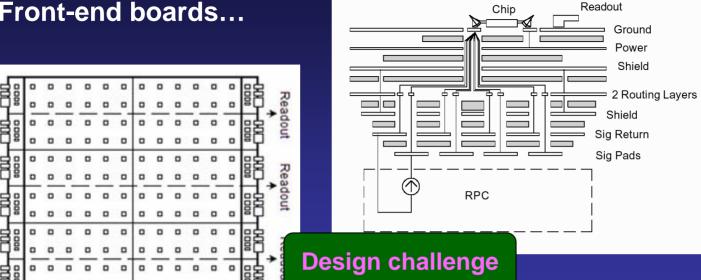
Output: hit pattern and time stamp

Design work at FNAL

Abderrezak Mekkaoui James Hoff Ray Yarema

Design work started in June, 2004

Digital completed

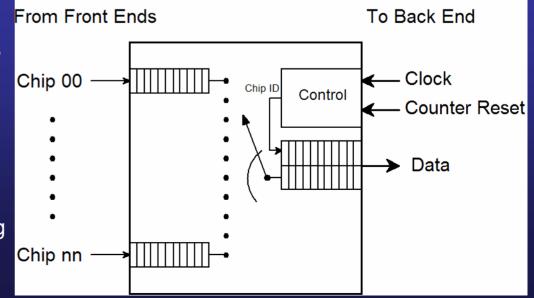

First version submitted on March 18th 2005

Front-end boards...

Readout

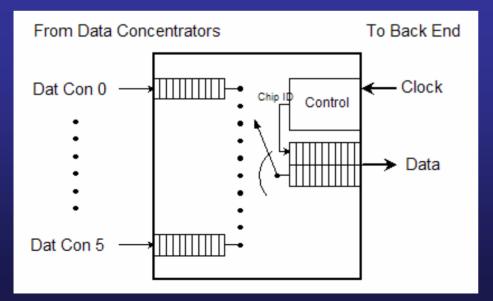
Readout

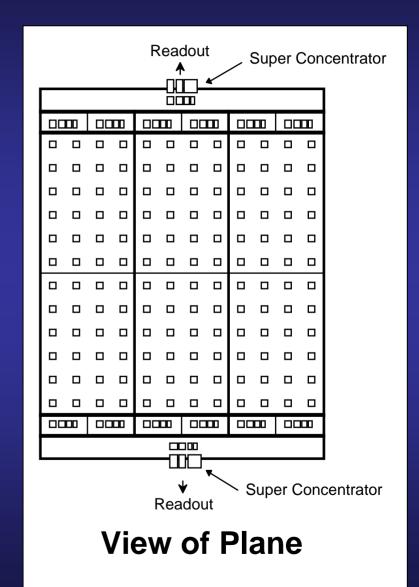
Readout

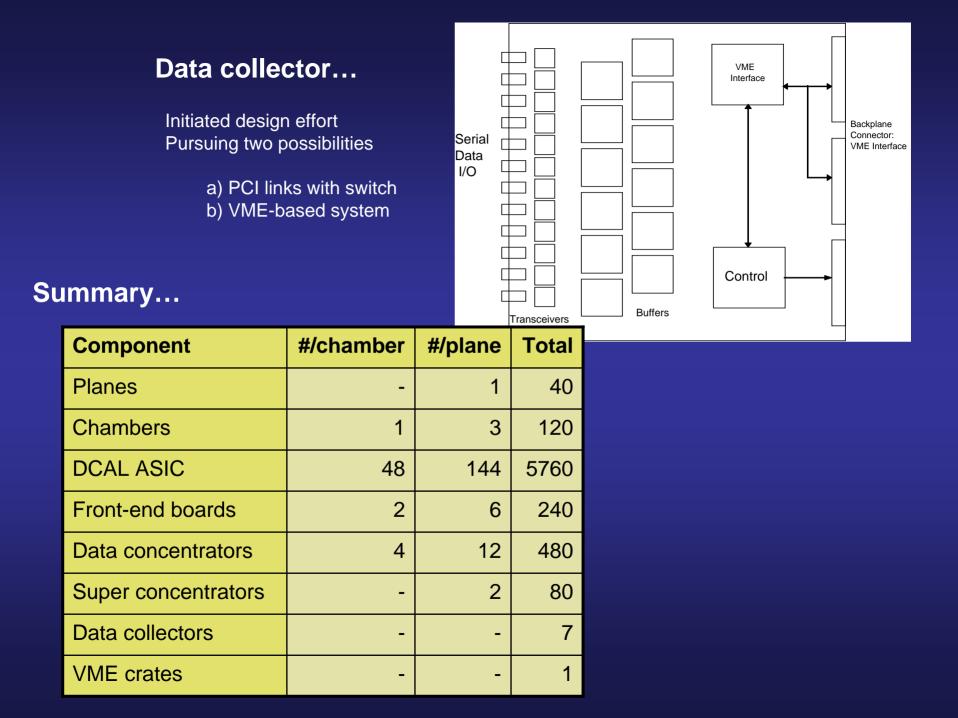


Custom

Data concentrators...


8 layer boards Each housing 24 ASICs Overall thickness < 3 mmContains both analog and digital signals


> Readout 12 ASICs Located on sides of section Can buffer events Distribution of trigger and timing **Essentially FPGAs** All transmissions in LVDS

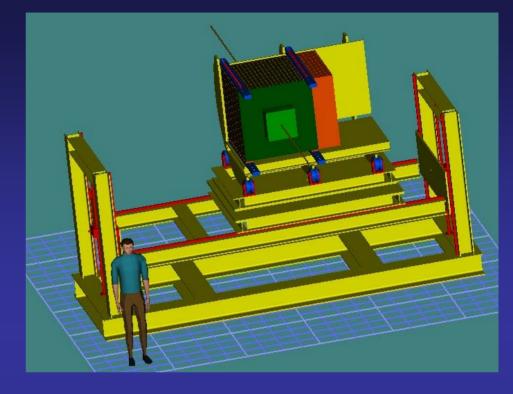


Super concentrators...

Driven by urge to reduce cost (VME)	
Reads out 6 data concentrators	
Located on side of module	
Similar design to data concentrator	

List of subtasks

1	Overall engineering and design	ANL
2	ASIC engineering and design	FNAL
3	ASIC testing	ANL
	Test board design	FNAL
	Test board production	
	Measurements	
4	Front-end PC board engineering and design	ANL
	prototyping and testing	FNAL
5	Data concentrator engineering and design	ANL
	prototyping and testing	Chicago
6	Data collector engineering and design	ANL
	prototyping and testing	Boston
7	DAQ system: VME processor and programming	Washington
8	Timing and trigger system engineering and design	UTA
	prototyping and testing	
9	High voltage system	Iowa
10	Gas mixing and distribution system	lowa


Mechanical Structure

CALICE builds versatile structure

Absorber 20 mm Steel \rightarrow 1 X_0 sampling 40 layers \rightarrow 4 λ_l at 90^0

Recent studies might indicate that Tungsten with

Thickness of 0.7 cm \rightarrow 2 X_0 sampling 58 layers \rightarrow 4 λ_l at 90^0

might result in better PFA performance (see talk by S Magill)

a) Do we need to test a Tungsten prototypeb) If yes, can we re-use the CALICE structurec) What is the optimum sampling depth for W

Cost estimate (M&S only)...

Item		Cost	Serial IO
Resistive Plate Chambers		\$20,000	
Front-End ASIC		\$225,000	N
Front-end Readout Boards		\$50,000	t
Data Concentrator Boards		\$85,000) `
Data Collector System		\$60,000	} \$20
Power Supplies, Optical Fibers, HV		\$60,000	J
Grand total \$500,000 + 50% cont		ontingency	

Not yet updated to reflect latest developments

\$200,500

Item		Cost	
GEMs		\$200,000	
Front-End ASIC		\$125,000	
Front-end Readout Boards		\$50,000	
Remaining systems from RPCs		\$0	
Additional for GEMs \$375,000 + 50% continge		ngency	

Recent Proposals to Funding Agencies...

Agency	Institutes	Request	Award
LDRD (ANL directorate) used for manpower mostly	ANL	300,000	181,500
LCRD (DOE)	ANL, Boston, Chicago, Iowa	105,000	
LCRD (DOE)	UTA, Washington	105,170	
U of C Collaborative Grants	ANL, Chicago	To be submitted	
US-Japan	ANL (LBNL. Oregon, SLAC…)	50,000	0
MRI 3 calorimeter prototypes	ANL, Oregon, UTA	964,000	

Time scales

2005	Russia	Equip 1 m ² with Minsk-based readout (32 x32 channels)
	US	Develop and test design of larger chambers
	GEMs	Cosmic ray studies with stacks of GEMs
	GEMs	Initiate long foil production and testing
	US	Prototype ASICs: submission March 31 st
	US	Specify remainder of readout system by CALICE meeting
	US	Design and prototype other subsystems
2006		Produce chambers
		Produce ASICs
		Produce other subsystems
2007		Move to test beam
		Take data Tune Hadron
2008		Take data Simulation
		Design LC hadron calorimeter