

The scintillator HCAL testbeam prototype

Felix Sefkow
DESY
CALICE collaboration

LCWS 05 at Stanford March 18-22, 2005

This talk

includes material from

Mikhail Danilov (ITEP, Moscow)

who had to cancel his contribution to this conference due to delays in visa procedures

Outline

- The "Minical" experience, final results
- The testbeam prototype, goals and design considerations
- Readout electronics, SiPMs and scintillators, mechanics

 More talks by J.Blazey, E.Garutti, G.Martin, J.Cvach and R.Poeschl

The "minical" pre-prototype

- DESY 6 GeV e beam 2003-2004
- 108 scintillator tiles (5x5cm)
- Readout with Silicon PMs on tile, APDs or PMTs via fibres

The Silicon Photomultiplier

- A pixilated solid state Geiger counter
 - 1000 pixels on 1mm²
 - Gain ~ 10**6, efficiency 10...15%
 - At 60 V typ. bias voltage

Testbeam results

- Resolution as good as with PM or APD*
- Non-linearity can be corrected (at tile level)
 - Does not deteriorate resolution
 - Need to observe single photon signals for calibration
- Well understood in MC
- Stability not yet challenged

Minical conclusions

- The SiPM has been established as photo-sensor for calorimetric applications
- It opens up new possibilities for highly granular scintillator-based calorimeters

1m³ Hadron beam prototype

- Test the analog and semi-digital scintillator based HCAL concept
- High granularity core with 3cm tiles
- 8000 channels in total

Reading every layer essential

HCAL testbeam goals

- Technology: Gain large scale, long-term experience with a SiPM readout detector
 - I dentify critical operational aspects to optimize photo-detector, electronics and calibration system
- Physics: Collect data samples (~ 10⁸ evts) to
 - Explore hadron showers with unprecedented granularity
 - Validate hadronic shower models
 - Develop particle flow algorithms

Prototype design challenges

Design based on minical experience (SiPM, scintillator, cable) - but...

NOT a prototype for an IIC detector

- Industrialize SiPM and tile production scale by two orders of magnitude
- 8k channel bias supply and readout electronics for beam test with FCAL
- Versatile calibration & monitoring system

Modular mechanical design

Collaborative effort

Software

- No time to cover the software side
- Using the (inter-regional)
 LCIO data model
 - For physics studies and simulations
 - Also for calibration and conditions data
 - See R.Poeschl's talk

Calibrating & monitoring SiPMs

- Challenge: control a non-linear detector
- Energy scale is set by MIP response
- Non-linearity correction requires observation of single photo-electron signals
 - By-product: directly observe SiPM gain
- Temperature sensitivity (at g=10**6)
 - Gain 1.7 % / K, total signal 4.5% / K
- Redundant calibration and monitoring system
- See talk by E.Garutti

ECAL based electronics concept

- Similar number of analogue channels
- To eventually meet same rate and latency requirements

Ch. De la Taille, LAL

CERC (CALICE ECAL r/o card)

- 8x12 ADCs (16 bit)
- 8 MB memory (2k events)
- DAQ rate 1 kHz peak, 100Hz average
- 180 ns trigger latency

Slow and fast shaping

- With (slow) 180 ns shaping and single pixel noise rate of 2 MHz observation of single photon peaks hampered by pile-up
- Add fast shaping for calibration (no trigger latency required)

tests with SiPM minical cassette at LAL (during LCWS 04)

28-Apr-04
8:45:32

10 ns
20.8mV

20384 swps

(1) 10 ns
20.0mV

10 ns
20.0mV

10 ns
20 mV

10 ns
20 mV

10 ns
20 mV

10 ns
20 mV

20 mV 50Ω

2 trig only

Ext AC 140mV 50Ω

TRACE A

Trace
OFF Dn

MULTI ZOOM &
AUTO SCROLL

4 GS/s

STOPPED

26ns peaking time

Front end chip ILC_SiPM

ASIC commissioning with SiPM

- · Optimize readout chain
- Thanks to LAL: proliferation of test boards (and know-how)

M.Groll (Hamburg), A.Karakash (MEPHI)

HCAL readout architecture

ILC_SiPM chip

2 base boards (12 piggy backs) / layer

CRC CALICE Readout Card

8 layers / DAQ board

HAB ("piggy back")

Temperature Monitor ASIC

Parameter Shift-Reg

Analog Line Driver

Analog Test Output

M.Reinecke (DESY)

Front end test board

Charge Injection

SiPM Interface, 18 chns.

Dimensions:

16 x 16 cm²

HAB

Test Outputs (SRIN, TCALIB)

DAQ Interface

M.Reinecke (DESY)

ASIC commissioning with DAQ

- Connected to CRC
- Load shift registers
- Test using charge injection

Readout electronics

- Unified ECAL and HCAL readout concept developed
- Sample and hold type solution for SiPMs found
- 18 ch ASIC developed and mass-produced in less than 1 year
- Commissioning of readout boards ongoing, in parallel with detector construction. (Base boards not yet tested.)
- Same system to be used for tail catcher / muon tracker

SiPM optimization

- Quenching resistor larger than in minical SiPMs
- Advantages:
 - Better pixel uniformity, gain stability
 - Reduced sensitivity to shape of calibration light pulse
 - Safer production process

E.Popova, MEPHI

SiPM ageing studies

- Tested 20 SiPMs for 1500 hours
- 5 SiPMs up to 90°C
- No parameter changes observed
- More studies with higher statistics needed – and underway
- Be the first to know...

E.Popova, MEPHI

SiPM production

Still a pioneer endeavor

(MEPhI, PULSAR)

	Date	SiPMs on wafer total amout	Delivered to ITEP
1) Test batch with different resistivity of a quenching SiPM pixels resistors (from 2M to 20M)	May 2004	3000	840
2)Main batch	Yuly 2004	15000	No delivering - bad wafer quality
3) Repeated main batch resistivity	February 2005	10000	Under semiautomatic probe selection

Latest news from Woscow: seems OK

SiPM tests, mounting

- Two-stage test procedure:
 - On wafer, probe station at MEPHI, fast
 - On mounting plate; test bench at ITEP
- First half ready in May
- Some difficulties with support plate, under improvement
- Biggest unknown: yield of main batch; may need another cycle

SiPM tests - stage 2

Semi-automatic test bench: equalize light yield

Pilot batch

Measure "all" parameters and select

obtained	840	
tested	830	
good	712 _{85%}	
bad	118	
a) high noise	90	
b) low gain (no signal)	7	
c) single p.e. peak width	21	
broken	10	

SiPM noise

Noise drops like exp (-1.5*N_{px})

SiPM parameters

- Adjust bias voltage to 15 px/MIP
- SiPM parameters:
 - gain
 - noise frequency at zero pixel and at ½ MIP levels
 - cross talk
 - Efficiency
 - width of single p.e. peak
 - dark current
 - saturation curve
 - SiPM temperature during test
- To data base Differences mostly from different test bench channels

(colors/markers)

E.Tarkovsky, I TEP

Scintillator tile production

	3x3 cm ²	6x6 cm ²	12x12 cm ²
to be produced	3500	3500	1000
mold	3500	3500	1000
edge mated	1500	1500	450
groove milled and fiber installed	850	840	450
shipped to DESY	100	100	28

Bending loops for 60mm tiles is most time consuming step

Instrumented tiles

- Scintillator production well advanced
- Semi-automatic test bench for SiPM tile system almost ready
 - Measure light yield in px/MIP
- Ready for mass production of SiPM tile systems with data sheet
- Tiles for cassette no. 2 shipped this week

Tile tests at DESY

Check after transport single photon separation(spe) = 14.10 chphoton electrons/MIP 60 = 13.80 ch 40 20 800 ADC channel 200 400 600 Mean 17.55 #Entries 2.275 Shift understood 4.145 / 10 χ^2 / ndf 0.9406 (electronics) 37.7 ± 3.369 17.53 ± 0.1607 2.27 ± 0.1373 16.09 2.348 5.048 / 12 0.9564 37.32 ± 3.277 15 16.02 ± 0.1606 2.291 ± 0.1287 10 5 22 24 12 14 16 18 20 N_{pe}/MIP

Cassette assembly

Next steps: fibers and wires

- Measure SiPM positions
- Drill FR4 board, check
- Fiber routing, test
- Done
- Glue flex prints
- Solder cables
- Test
- Number One ready in April

Outlook

Still considerable risks and unknowns. - Yet, if all goes well:

Establish electronics chain

Spring

Beam test cassette Number One

Summer

- With ECAL at DESY

 Several (few...many) cassettes with final electronics and monitoring system

Fall

Movable stage built & fully cabled up

Winter

Hadron beam

Spring

HCAL stack

Stack support

Movable table

Testbeam set-up

No conclusion

... as we are in full swing

We are serious about testbeam.