

### R&D for a TPC with GEM Readout

#### **Astrid Münnich**

Manuel Giffels Gordon Kaußen Martin Killenberg Sven Lotze Joachim Mnich Stefan Roth Michael Weber

> III. Physikalisches Institut B **RNTHAACHEN**

International Linear Collider Workshop Stanford, California, USA

March 18-22, 2005



the Physics and Detectors

for Future Linear et e- Colliders





Astrid Münnich

R&D for a TPC with GEM Readout

Overview



- TPC Prototype Construction & Measurements
- Hodoscope Construction & Measurements
- Electronics
   Test for new readout
- TPC Simulations Development of framework

# **TPC Prototype: Requirements**



- 5T magnet at DESY Hamburg: 280 mm bore
- Materials with low density (radiation length)
- GEM readout from test TPC should be used
- 26 kV for drift field available





## **TPC Prototype: Construction**





pitch = 2.8 mm

 $U_{max} = 26 \text{ kV}$ 

 $\ell_{drift}$  = 26 cm

 $E_{max}$  = 1000 V/cm



## TPC Prototype: First Results







**RNTHAACHEN** 

Astrid Münnich R&D for a TPC with GEM Readout

## Hodoscope: Design







**RNTHAACHEN** 

#### Astrid Münnich R&D for a TPC with GEM Readout

## Difference between Hodoscope and TPC





- Clear discrepancy near the anode
- Flat area in the middle of fieldcage

**RNTHAACHEN** 

Astrid Münnich

R&D for a TPC with GEM Readout

#### Simulation of Electric field





#### Simulation of Electric field





#### Simulation of Electric field





#### Deviation from z in Simulation





- Rise of curve in region of inhomogeneities
- Qualitative same trend as in measurement

**RWITH AACHEN** 



10

#### Tasks:

- Measurement of the drift velocity
- Measurement of the field homogeneity to the order of  $\leq 10^{-3}$
- Measurement of the spatial resolution

**Results:** 

- **Resolution hodoscope:** 58  $\mu$ m in x, 624  $\mu$ m in z
- Single point resolution of TPC: 266  $\mu$ m
- Measurable field inhomogeneities in TPC



# Readout Electronics: Preamplifier



11

Goal: Fast and small preamplifiers Preshape 32

- 32 channel preamplifier/shaper with parallel In/Out
- Nominal peaking time: 45ns
- Single ended output
- Needs cable driver to get signal to reasonable distance



The preshape is bonded on a small board to perform tests.

 $\Rightarrow$ Possibility to reduce size for a readout with small pads.



# **Electronics: Preamplifier Results**

- Measurements with test pad plane
- 50 MHz 8 bit VME ADCs (20 channels)









13

## Three ADC candidates:

| Origin           | Munich | Canada | Hamburg |
|------------------|--------|--------|---------|
| System           | VME    | VME    | VME     |
| Resolution [bit] | 10     | 10     | 8       |
| Frequency [MHz]  | 40     | 40     | 100     |
| Memory [sample]  | 1000   | 1000   | 4000    |
| channels/module  | 32     | 48     | 16      |

#### Goal:

Replace slow readout with best candidate for test beam

#### Simulation in three steps:

- 1. Primary ionisation
- 2. Drifting of electrons
- 3. Amplification with GEMs
- $\rightarrow$  Details of simulation: Session J Track 3

#### Studies of:

- Influence of electric and magnetic fields
- Ion backdrift
- Pad response, pad geometry

## Inputs for the Simulation

#### TPCSim v.1.0

| 1. Create Tracks for Pythia Events     | 3. Amplification and Creation of VoxI                                                  | Program Output                                                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Inputfile hts_#1000_R13_L26.root       | Inputfile 130_L260_E240_TDR.root<br>Readout Frequency 12.5 [MHz]                       | Opened<br>/.automount/achdsrv2/institut_3b/mue<br>Drifting for TDR gas with E=240                                            |
| TPC radius                             | Pad Width Pad Height                                                                   | dl=283.994 [mum/sqrt(cm)]<br>v_d=44.7989 [mm/mus]                                                                            |
| TPC Length / 2 260 [mm]                | Number of Pads Pads in Row 448 32                                                      | 1128 electrons on track: 0<br>2315 electrons on track: 100<br>1889 electrons on track: 200                                   |
| #e- pro Cluster hts_#1000_R13_L26.root | Offset of Padplane to Center of TPC       0     x [mm]     10     y [mm]               | 1373 electrons on track: 300<br>1632 electrons on track: 400<br>1691 electrons on track: 500<br>2366 electrons on track: 600 |
| Simulate                               | on each Voxel 5000 # e-                                                                | 1721 electrons on track: 700<br>1871 electrons on track: 800<br>1730 electrons on track: 900                                 |
|                                        | U GEM 1 315 [V]                                                                        | DRIFTING FINISHED<br>Opened<br>/.automount/achdsrv2/institut_3b/mue                                                          |
| 2. Drift Tracks                        | Transfer Field 1         2500         [V/cm]           U GEM 2         315         [V] | Drifting for TDR gas with E=240<br>V/cm,<br>dl=283.994 [mum/sett(cm)]                                                        |
| Inputfile Sim_B0.0_R130_L260.root      | Transfer Field 2 2500 [V/cm]                                                           | v_d=44.7989 [mm/mus]<br>d_t=475.95 [mum/sqrt(cm)]                                                                            |
| Gas (TDR (IDR, PS, P10)                | Induction Field 5000 [V/cm]                                                            | columns.<br>Offset of Active Area in x: 38.4 in y:                                                                           |
| Electric Field E  240 [V/cm]           | Prameter File new.par.nocomments                                                       | 54.8<br>Parameter file read successfully                                                                                     |
| Drift                                  | Make Pads                                                                              | Cancel Program                                                                                                               |



• 🗆 🗙

4

#### **RWITHAACHEN**

#### Astrid Münnich R&D for a TPC with GEM Readout

#### **Results for Reproducibility**





RNTHAACHEN Astrid Münnich

R&D for a TPC with GEM Readout

# Summary



#### Prototype & Hodoscope

- Both working synchronously and stable
- Systematic studies of TPC properties
- Test beam planned for this year

New electronics

- Preamplifiers and cable driver chosen
- Production in progress
- Test with new readout plane coming soon
- Simulation
  - Understand discrepancy in diffusion results
  - Systematic studies next
  - Transfer to LCIO & Marlin started

    RWTHACHEN

    Astrid Münnich

    R