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‘ Outline I

Charge transfer inefficiency (CTT)

ISE-TCAD (FEA 2D) simulation of 3-phase CCD:
Radiation dose ~ 30 krad bulk damage

Effect of initial conditions

Frequency variation

Simple model of simulation

Experimental set-up for column parallel CCD
Dark current measurements

Initial CTI test measurements

Summary
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‘ Simulation CCD I

Detector structure and potential at gates after initialization. The signal

charge is injected under gate 3.
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‘ Charge Transfer I

Signal charge density, Trapped charge density, from
almost at output gate. transfer of signal charge.
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‘Empty Traps: CTI Simulationl

——————————
1 ISE-TCAD Simulation
: 50 MHz readout

— Simulation

Sim. single
trap levels

Traps initially empty.

e Empty trap
simulation may not be a good

approximation.

Consider partially filled traps: improves simulation by representing a

continuous readout process.
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‘O.44eV Trap CTI Contributionl

Attempt to improve simulation. Comparison of

initially empty and partially filled traps.
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e Negligible contribution to CTI from 0.44eV trapping for partially

filled traps (due to long emission time).

e Thus, neglect 0.44eV traps in further study.

e Needs to be confirmed by experiment.
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‘O.l7eV Trap CTI Contributionl

| ! |
Partial trap filling
| 0.17eV traps, 50MHz

— Partial raps - 1raps partially filled:
e Clear peak structure.

e Above 250K, previous data
indicates Dark Current

effects.

250
Temp (K)

New data to cover simulation temperature range:

possibility to measure peak structure.
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‘ Frequency Dependence I

Partially filled

Initially empty
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At high temperature: emission time so fast that trapped charge rejoins

passing signal.

Near peak: for higher readout frequency there is less time to trap charge.




LCWS’05, SLAC, March 2005 André Sopczak

‘Simple CTI Model for 3-Phase CCDI

Why model a simulation?

Faster than full ISE simulation, provides insight into factors affecting CTTI.
Traps undergo two basic processes:

1. Traps capture electrons from the signal charge,

2. Electrons are emitted from filled traps.

Processes occur at different rates. Governed by capture 7. and emission 7,

time constants.

Tr apped Char ge Tr apped Char ge
During transfer After transfer
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‘ISE Simulation cf. Simple Modell

0.17eV partially filled traps at 7,25,50 MHz readout frequency.

GO Comparison of simuldted and
modelled CTI
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‘Column Parallel CCD Studiesl

High readout speed requires column parallel technology.

LCFI prototype device CPC-1 capable of 20 MHz readout per

channel.

Unirradiated tests performed at CCLRC - RAL

Fe®® source used to mimic MIP.

Standalone set-up uses four external ADC amplifiers.
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‘ CPC-1 Spectruml

Typical output from three columns of CPC-1 with Fe®® source.
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‘CTI - Event Selectionl

Fe®® isolated hits (=~ 1620 e~ ) used to determine CTI.

Hits located using 3x3 cluster method.
Loose selection criteria:

e Pixel amplitude > 50y0ise,

. Select events which are
o Xi_icluster;| < 8omoise. within 420 of signal peak.

| central:cluster {cluster<350&&central<200} | | Isolated pixel hits, ch 2. |
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‘ CTI - Determination |

Scatter plot of isolated pixel hits; ADC amplitude () against pixel number

gives

CTI = —

1 d@
Q() d (PlXel) 7

where ()¢ is intercept from straight-line fit.
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‘CTI - Voltage Inducedl

e Unirradiated device; small CTI (< 1072).

e However, decrease of clock voltage reduces transfer efficiency.

e Provides possibility to measure CTI as function of clock voltage.
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‘Dark Current - Measurement |

Thermally generated electrons captured in potential wells.

Charge collected proportional to integration time.
10 overclocks sampled per frame - used as reference level.

Gain (e~ /ADC) calibrated from Fe® source (at each temperature).
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Dark current measurement DC at different temperatures
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‘Dark Current - Resultl

Fit to Jg. = T exp (o — B/T).
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Uniform dark current characteristics observed across the four channels
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‘ Summary and Outlook I

e Radiation hardness simulation of a CCD prototype studied.

Simulation

e (Clear CTT peak structure observed.

e Simple model (emission and capture time) agrees well.

Experiment

e Investigated with low statistics:

— CTI (Voltage induced),
— Dark Current.

Future
e Simulation of column parallel CCD ongoing for comparison with data.

e Data from Liverpool will allow confrontation with simulation.




