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The Big Goal

This talk investigates the following question:

• Assume: LHC has run, ’discovered’ SUSY, made
the expected measurements

• Now assume: linear collider has run, made
expected measurements

• What will be the theoretical uncertainty in Ωdmh2

(the neutralino relic density) post-NLC?

Today: A report1 on our progress.

1More detail can be found during Richard Gray’s talk later today!
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Last year at ALCPG04, results from a ’bulk point’:
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Figure 1: Dark Matter Power of the Linear Collider For the

mSUGRA point m0 = 57 GeV, m1/2 = 250 GeV, tan β = 10, sgn(µ) = +1, A0 = 0.

A. Birkedal and K. Matchev, 2004

Today, first results regarding a focus point.
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Outline 2

• The Big Goal

• Dark Matter and Supersymmetry

• Discovering Dark Matter at a Collider

• The Linear Collider

• Conclusions

2All RGEs have been run using ISAJET 7.69, physical spectra and relic densities have

been calculated using DarkSUSY, except where otherwise noted.
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Dark Matter and Supersymmetry

Dark Matter → WMAP constraints:

0.094 ≤ Ωdmh2 ≤ 0.129 (at 2σ)

Simplest: neutral particle, stable on cosmological timescales.

In practice:

Ωdmh
2
=

ρdm

ρcrit

h
2
=

mdm ndm

ρcrit

h
2 ∼ 0.1

〈σv〉EW

〈σv〉 (1)

WIMP (weakly interacting massive particle) is good!

SUSY theories:

• contains WIMPS: spin-1/2 partners of the photon, Z, and

two Higgses (neutralinos).

• LSP (lightest superpartner) is stable from R-parity.

• Often the LSP is the lightest neutralino.
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Discovering Dark Matter at a Collider

If a collider measures some masses of a broken SUSY theory,

how well can we determine the relic density, Ωdmh2?

• generic set of annihilation diagrams → many masses →
try to measure every input into the relic density calculation

→ dead end
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As a start:

• Hope that the world exists at a point in SUSY parameter

space where not all of the masses are important.

Then hope to measure a few masses accurately enough to

bound the relic density.

As an illustrative example, take a focus point in mSUGRA:

tan β = 10, sgn(µ) = +1, m0 = 3280, m1/2 = 300,

A0 = 0.

Figure 2: From R.C. Group and B. Scurlock.
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Nice! The -inos are relatively light (in GeV):

mχ0
1

= −107.7, mχ0
2

= −166.3, mχ0
3

= +190.0,

mχ0
4

= −294.2, m
χ±
1

= −159.4, m
χ±
2

= −286.6

• all of the sleptons are above 3200 GeV

• all of the squarks are above 1950 GeV

• the gluino weighs in at 850 GeV

Another reason to like this point:

• dominant diagrams for dark matter → SM gauge boson,

neutralino and chargino exchange.
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So, we can hope to see the most important -inos and thereby

determine the relic density.
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What are the key soft parameters in determining the relic den-

sity? Let’s see...

Very little effect from sleptons or squarks.

What about the -ino sector parameters?

Neutralinos:
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Figure 3: Effect on Relic Density of Varying M1. The actual

mSUGRA point is in blue. The green lines denote the 2-σ WMAP limits on the dark matter

density. The red line shows what happens to the relic density as a function of M1.

March 21st, 2005 LCWS05 talk Stanford 9



Figure 4: Effect on Relic Density of Varying M2. The actual

mSUGRA point is in blue. The green lines denote the 2-σ WMAP limits on the dark matter

density. The red line shows what happens to the relic density as a function of M2.
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Figure 5: Effect on Relic Density of Varying µ. The actual

mSUGRA point is in blue. The green lines denote the 2-σ WMAP limits on the dark

matter density. The red line shows what happens to the relic density as a function of µ.
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Figure 6: Effect on Relic Density of Varying tan β. The

actual mSUGRA point is in blue. The green lines denote the 2-σ WMAP limits on the

dark matter density. The red line shows what happens to the relic density as a function of

tan β.
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And how much varying mA changes the relic density:

Figure 7: Effect on Relic Density of Varying mA. The actual

mSUGRA point is in blue. The green lines denote the 2-σ WMAP limits on the dark matter

density. The red line shows what happens to the relic density as a function of mA.
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The Linear Collider

What can we measure with a 500 GeV linear collider?

Lots!
But, how well can we pin down M1, M2, µ and tan β?

• h, χ0
1, χ0

2, χ0
3, χ±

1 , χ±
2 should be visible

• we can tell that all other sparticles have masses above 250

GeV (at least)

• M1, M2, µ and tan β from accurate measurement of the

decays of χ0’s and χ±’s.

• We are investigating production and decay of χ+
1 χ−

2 ,

χ+
1 χ−

1 , χ0
1χ

0
3 and χ0

2χ
0
3 using 500fb−1 of 90% polarized

e+e− data (250fb−1 left-polarized and 250fb−1 right-

polarized) simulated for a 500 GeV linear collider.
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• Each decay (such as χ+
2 → χ0

1W
∗ → χ0

1ff ′) has a
dilepton (or possible dijet) invariant mass distribution such
as:

dΓ
χ+
1

dmff ′
∝

mff ′

s

“

m2
2 − m2

1

”2
− 2m2

ff ′
“

m2
2 + m2

1

”

+ m4
ff ′

„

m2
ff ′ − m2

W

«2

×
““

m
4
1 + m

4
2 + m

2
ff ′m

2
2 − 2m

4
ff ′ + m

2
1

“

m
2
ff ′ − 2m

2
2

””

− 6 ζ ε1ε2 m
2
ff ′ m1m2

”

.

(4)

where ζ =
|C

χ+
1 χ0

1W−
V

|2−|C
χ+
1 χ0

1W−
A

|2

|C
χ+
1 χ0

1W−
V

|2+|C
χ+
1 χ0

1W−
A

|2

• Even easier – kinematic endpoints determine mff ′,max =

m2 − m1 (Here for 2 → 1ff ′), so we can find kinematic

endpoints and then fit to both distributions and endpoints.

• Additional information is needed to find m2 and m1 sepa-

rately. This is supplied by also looking at the distribution of

the dilepton energy, Eff ′.

• The upper and lower limits of Eff ′ depend on mff ′, this

relationship is given by:

mff ′
`

Eff ′
´

=

s

E2
ff ′ −

„

p2 −
q

`

E2 − Eff ′
´2 − m2

1

«2

.(5)

• Given enough statistics, it is even possible to fit to this 2-d

distribution:
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Figure 8: 2-d distribution of me+e− vs. Ee+e−. The red line

shows the envelope function.
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Summary of Backgrounds and Cuts

• e+e− → χ+
1 χ−

1 → jjl + /E

Require one isolated lepton

Main background is W +W− pair production

| cos θj| < 0.8, /E > 300 GeV, mjj < 70 GeV, El > 15

GeV, Ntracks > 10.

• e+e− → χ0
1χ

0
3, χ0

2χ
0
3 → jj + /E

Main backgrounds: W +W−, ZZ and χ+
1 χ−

1

| cos θj| < 0.9, /E > 350 GeV, pT > 50 GeV

Must also include a b-tag for left polarized electrons.

• e+e− → χ0
1χ

0
3, χ0

2χ
0
3 → ll + /E

Require two oppositely charged leptons

Main backgrounds: W +W−, ZZ and χ+
1 χ−

1

| cos θj| < 0.9, /E > 350 GeV

For left polarized, we must require cos θl+ > cos θl− to cut

W +W−.

• e+e− → χ0
2χ

0
3 → jjll + /E

Require two oppositely charged same flavor leptons and 2

or 3 (gluon emission) jets

Main backgrounds: tt, ZZ and χ+
1 χ−

2

| cos θj| < 0.95, El,j < 110 GeV, pT > 10 GeV, /E > 275

GeV

We also need an anti b-tagging cut to reduce tt further.
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χ0
2χ

0
3 → jj(j)ll + /E

Di-Lepton Invariant Mass (GeV)

2J2L, Di-Lepton Invariant Mass, With Cuts, 500fb-1
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Figure 9: Dilepton invariant mass distribution for

χ0
2χ

0
3 → 2(or3)j2l.
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Sample Preliminary Results

• mχ0
1

= 107.5+0.5
−1.1 GeV (Input value is 107.7 GeV)

• mχ0
2
− mχ0

1
= 58.7+0.2

−0.1 GeV (Input value is 58.6 GeV)

• mχ0
3
− mχ0

1
= 82.0+0.4

−0.1 GeV (Input value is 82.3 GeV)

Current and Future Tasks

• Cross-check with the SLAC sample of SM background

(thanks T. Barklow and company!).

• Finish analyses on all channels

• Convert measurements of χ0,± masses and σs into M1,

M2, µ, tan β

• Determine lower limits on l̃, q̃, H and A masses

• Determination the accuracy of LC measurement of ΩDMh2

Finally, a big ’Thanks!’3 to T. Barklow, J. Feng, R.C. Group,

M. Peskin, B. Scurlock and many others for continued support

and suggestions thus far.

3’Thanks’ in more modern language is a ’shout-out.’
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