Guaranteed Rates for Dark Matter Production at Colliders

Shufang Su • U. of Arizona

J. Feng, F. Takayama, S. Su
hep-ph/0503117
Dark Matter (DM)

- Non-baryonic
- Stable
- Neutral
- Cold

\[\Omega_{DM} h^2 = 0.112 \pm 0.009 \]

- Can not be any of the known particles
- Microscopic identity of DM?

WIMP and **superWIMP**

- Appear in particle physics models motivated independently by attempts to solve EWSB
- Relic density are determined by \(M_{pl} \) and \(M_{\text{weak}} \)
 - Naturally around the observed value
 - No need to introduce and adjust new energy scale
Neutral WIMP

- \(m_{\text{WIMP}} \gg M_{\text{weak}} \)
- \(\sigma_{\text{an}} \gg \alpha_{\text{weak}}^2 M_{\text{weak}}^{-2} \)

\(\Omega_{\text{WIMP}} \gg h \sigma_{\text{an}} v i^{-1} \)
	naturally around the observed value

e.g. neutralino LSP

![Graph showing the comoving number density over time with increasing \(\langle \sigma_A v \rangle \)]
superWIMP

WIMP → superWIMP + SM particles

$10^4 \text{ s} < t < 10^8 \text{ s}$

$\Omega_{\text{SWIMP}} = \frac{m_{\text{SWIMP}}}{m_{\text{WIMP}}} \Omega_{\text{WIMP}}$

superWIMP

- e.g. Gravitino LSP
- LKK graviton

WIMP

- neutral
- charged
WIMP production (I)

- \(\Omega_{\text{WIMP}}, \Omega_{\text{SWIMP}} \leq \Omega_{\text{DM}} \)
- WIMP annihilate efficiently in early universe
- WIMP be produced efficiently at colliders

Upper bound on \(\Omega \)
Lower bound on rates

- neutral WIMP at ILC: see Perelstein's talk
- both ILC and LHC
- consider superWIMP scenario: more promising
WIMP production (II)

WIMP annihilation

\[
\sigma_{\text{tot}} = \sum_{ij} \sigma(X \bar{X} \rightarrow ij; \hat{s})
\]

\[
\langle \sigma_{\text{tot}} v_X \rangle = \sigma_{\text{an}} v_X^{2n} + O(v_X^{2n+2}) = \sigma_0 x^{-n} + O(x^{-n-1})
\]

\(n=0: \text{S-wave}; \ n=1, \text{P-wave}\)

\[x = \frac{m_{\text{WIMP}}}{T}\]

WIMP relic density

\[
\Omega_{\text{WIMP}} h^2 \simeq 1.07 \times 10^9 \text{ GeV}^{-1} \frac{n + 1}{\sqrt{g_* M_{\text{Pl}}}} \frac{x_F^{n+1}}{\sigma_0}
\]

\[
\sigma_0 = \frac{1}{c^2 - 1} \sqrt{\frac{8}{45}} \frac{2\pi^3 g_*^{1/2}}{g} \frac{x_F^{n+1/2}}{m_{\text{WIMP}} M_{\text{Pl}}} e^{x_F}
\]

\[x_F = \frac{m_{\text{WIMP}}}{T_F}\]

WIMP pair production: via detailed balance

\[
\sigma(ij \rightarrow X \bar{X}; \hat{s}) = \frac{\eta_{ij} v_X^2 (2S_X + 1)^2}{4(2S_i + 1)(2S_j + 1)} \sigma(X \bar{X} \rightarrow ij; \hat{s}) = \frac{\eta_{ij} (2S_X + 1)^2}{4(2S_i + 1)(2S_j + 1)} \frac{\kappa_{ij} \sigma_{\text{an}} v_X^{2n+1}}{\sigma_{\text{tot}}}
\]

\[\eta = 1: \text{identical}; \ \eta = 1: \text{otherwise}\]

\[\kappa_{ij} = \frac{\sigma(X \bar{X} \rightarrow ij; \hat{s})}{\sigma_{\text{tot}}}
\]
SuperWIMP with charged WIMP

LHC production

\[\bar{\sigma}(pp \rightarrow X \bar{X}; s) = \int_{4m_X^2/s}^{3m_X^2/s} du \int_u^1 dx \frac{1}{1-v_{max}^2/4} x \]

\[\times \sum_{ij} \left[f_{q_i}^P(x) f_{\bar{q}_j}^P(u/x) + f_{\bar{q}_j}^P(x) f_{q_i}^P(u/x) \right] \times \bar{\sigma}(q_i \bar{q}_j \rightarrow X \bar{X}; s) \]

Signal: two isolated charged track, free of hadron activity
- \(|n| < 2.5 \)
- detect the track
- \(\beta < 0.7 \)
- ionization -dE/dx more than double minimum-ionizing

Background free!
SuperWIMP with charged WIMP at LHC

- **P-wave vs. S-wave**
 - V_X^2 suppression compensated by σ_{an}
- **$S_X=0**
 - $\sigma / (2S_X+1)^2$
- **$\kappa_{qq}=0.2$ for $q=u,d,s,c,b$**
 - σ / κ_{qq}
- **$m_{SWIMP}/m_{WIMP}=0.6$**
 - $\sigma / m_{SWIMP}/m_{WIMP}$
- **isotropic distribution**
 - 10% variation for $\sin^2\theta$ or $(1-\cos\theta)^2$
- **η_{CUT} dependence**
 - drop by 20% for $|\eta|<0.5$
- **β_{CUT} dependence**
 - drop by factor of 2-5 for $\beta<0.6$
SuperWIMP with charged WIMP at ILC

\[\beta > 0.7, \ V_x^2 > 2 \]

unreliable
superWIMP: Discovery limit

10 events reach

P-wave

\(S_X = 0 \)

\(m_{SWIMP}/m_{WIMP} = 0.6 \)

Scale as

\((2 S_X + 1)^{-2} \) and

\((m_{SWIMP}/m_{WIMP})^{-1} \)
Neutral WIMP at LHC

- WIMP pair production is invisible
- Consider monojet event: $pp \rightarrow X \bar{X} j$

\[
\frac{d}{dz \, d\cos \theta} \bar{\sigma}(q(\bar{q} \rightarrow \bar{q}g) \rightarrow X \bar{X} g; \hat{s}) \approx F_{\bar{q} \rightarrow g}(z, \theta) \bar{\sigma}(q \bar{q} \rightarrow X \bar{X}; (1 - z)\hat{s})
\]

- Irreducible SM background: $pp \rightarrow \nu \nu j$

\[
\frac{d}{dz \, d\cos \theta} \bar{\sigma}(q(g \rightarrow \bar{q}q) \rightarrow X \bar{X} q; \hat{s}) \approx F_{g \rightarrow q}(z, \theta) \frac{2S_q + 1}{2S_g + 1} \bar{\sigma}(q \bar{q} \rightarrow X \bar{X}; (1 - z)\hat{s})
\]

<table>
<thead>
<tr>
<th>p_T^{min} (GeV)</th>
<th>B (fb)</th>
<th>1300 pb</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>19</td>
<td>1300</td>
<td>0.51</td>
</tr>
<tr>
<td>100</td>
<td>4.1</td>
<td>130</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Difficult!
Conclusions

If stable WIMP or superWIMP exist, cosmology provides model-independent lower bounds on production rates of new particles at colliders.

In superWIMP scenario with charged WIMP, spectacular signals at LHC and ILC.

In standard WIMP scenario, XXj signal is swamped by monojet background.