EGRET excess of diffuse gamma rays

Whim de Boer, Christian Sander, Valery Zhukov From CNB + SN N + Univ. Karlsruhe

Outline (see astro-ph/0408272)

EGRET Data on diffuse Gamma rays show excess in all sky directions with the $\mathcal{S} \mathscr{A} \mathcal{M E}$ energy spectrum characteristic for hadronisation of monoenergetic quarks

Data consistent with Supersymmetry

EGRET on CGRO (Compton Gamma Ray Observ.)

Energetic Gamma Ray Experiment

 Telescope (EGRET)
§ EGRET All-Sky Gamma-Ray Survey Above 100 MeV

C. Instrument Parameters and Capabilities

1. Type: spark chambers, Nal(T) crystals, and plastic scintillators.
2. Energy Range: 20 MeV to about 30 GeV .
3. Energy Resolution: approximately twenty percent over the central part of the energy range.
4. Total Detector Area: approximately $6400 \mathrm{~cm}^{2}$
5. Effective Area: approximately $1500 \mathrm{~cm}^{2}$ between 200 MeV and 1000 MeV , falling at higher and lower energies.
6. Point Source Sensitivity: varies with the spectrum and location of the source and the observing time. Under optimum conditions, well off the galactic plane, it should be approximately $6 \times 10^{-8} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for $E>100 \mathrm{MeV}$ for a full two week exposure.
7. Source Position Location: Varies with the nature of the source intensity, location, and energy spectrum from 5-30 arcmin.
8. Field of View: approximately a gaussian shape with a half width at half maximum of about 20 . Note that the full field of view will not generally be used
9. Timing Accuracy: 0.1 ms absolute
10. Weight: about 1830 kg (4035 lbs)
11. Size: $2.25 \mathrm{~m} \times 1.65 \mathrm{~m}$ diameter
12. Power: 190 W (including heater power)

9 yrs of data taken (1991-2000)

Main purpose: sky map of point sources above diffuse BG.

Basics of background and signal shapes

Blue: uncertainty from background shape

$\begin{aligned} \mathcal{B} \text { lue: } & \text { uncertainty from } \\ & \mathcal{W} I \mathcal{M} \mathcal{P} \text { mass }\end{aligned}$

Basics of background and signal shapes

Energy loss times of electrons and nucle i

$$
\tau^{-1}=1 / E \mathrm{dE} / \mathrm{dt}
$$

Protons diffuse for long times without loosing energy!
If centre would fiave harder spectrum, then hard to explain why excess in outer galaxy has $\mathcal{S A M E}$ shape (can be fitted with same WIMP mass!)

Systematic errors on shape of diffuse background gamma rays

Main results on falo profile, substructure, and WISP mass not affected after renormalization to data between 0.1 and 0.5 GeV .

Note: point-to-point errors only half of plotted errors of 15%. Statistical errors negligifle.

Basics from cosmology:
Hubble const. determines WIMP annifilation x-section

Thermal equilibrium abundance

$$
\begin{array}{ll}
\mathcal{T} \gg \mathcal{M}: & f+\bar{f}-\geq \mathcal{M}+\overline{\mathcal{M}} ; \mathcal{M}+\overline{\mathcal{M}}->f+\bar{f} \\
\mathcal{T}<\mathcal{M}: & \mathcal{M}+\overline{\mathcal{M}}->f+\bar{f}
\end{array}
$$

$$
\mathcal{T}=\mathcal{M} / 22: \mathcal{M} \text { decoupled, stable density }
$$

$$
\text { (ven annihilation rate } \cong \text { expansion }
$$

$$
\text { rate, i.e. } \Gamma=\left\langle\sigma v>n \chi\left(x_{f r}\right) \cong \mathscr{H}\left(x_{f r}\right)!\right)
$$

dore precisely by solving Boltzmann eq $\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-<\sigma v>\left(n_{\chi}^{2}-n_{\chi}^{e q 2}\right)$,
\mathcal{H} Term takes care of decrease in density by expansion. Right-fand side:
annihilation and production.
$\Omega \hbar^{2}=m \chi \pi \chi / \rho_{c} \approx 2.10^{-27}\left[\mathrm{~cm}^{3} / \mathrm{s}\right] /\langle\sigma v\rangle$

$$
(<\sigma v\rangle \text { ind pend. of } m \chi!)
$$

Present $\mathcal{W} \mathcal{M A P} \Omega 反^{2}=0.113 \pm 0.009$ requires $\langle\sigma v\rangle \approx 2.10^{-26} \mathrm{~cm}^{3} / \mathrm{s}$
$\mathcal{D M}$ density increases locally after galaxy formation.
In this room: $\approx 1 \mathcal{W} I \mathcal{M P} /$ coffee cup $\approx 10^{5}$ averaged density.

z: 20.7

Gas

Dark Matter

Clustering enfances flux from $\mathcal{D M A}$ by factor 20-200 (Dokuchaevet al.
March. 18, $2005 \quad$ ILC 20 Movie from \mathcal{M}. Steinmetz, Potsdam

DM annifilation in Supersymmetry

Dominant diagram for $\mathcal{W} \mathcal{M A} \mathcal{P}$ cross section in MSSM:
$\chi+\chi \Rightarrow \mathcal{A} \Rightarrow 6$ 66ar quark pair

\mathcal{B} - fragmentation well studied at LEP! Yield and spectra of positrons, gammas and antiprotons well known!

Galaxy = SUPER. B- factory with luminosity some 40 orders of magnitude above man-made \mathcal{B}-factories

Basics of astro-particle physics

Gamma Ray $\mathcal{F l u x}$ from $\mathcal{W} I \mathcal{M P}$ annifilation in given direction $\boldsymbol{\Psi}$:

$$
\phi_{\chi}(E, \psi)=\frac{\langle\sigma v\rangle}{4 \pi} \sum_{f} \frac{d N_{f}}{d E} b_{f} \int_{\text {line of sight }} B_{l} \frac{1}{2} \frac{\left\langle\rho_{\chi}^{2}\right\rangle}{M_{\chi}^{2}} d l_{\psi}
$$

Similar expressions for:
$p p->\pi_{0}+\chi->\gamma \gamma+\chi, \quad(\rho$ given by gas density, fighest in disc)
e $\gamma->e \gamma$, e $\mathcal{N}->e \gamma \mathcal{N}$ (ρ given by electron/gamma density, fighest in disc, Extragalactic Background (isotropic)
$\mathcal{D M}$ annifilation ($\rho \propto 1 / r^{2}$ for flat rotation curve)
All have very different, 6ut known energy spectra.
Cross sections known. Densities not well known, so keep absolute normalization free for each process.

Fit shape of various contributions with free normalization, but normalization limited by experimental overall normalization error, which is 15% for $E G R E T$ data. Point-to-point errors $\cong 7 \%$ (yields good χ^{2}).

Executive Summary for fits in 360 sky directions

Expected Profile

Observed Profile

$\mathcal{H a l o}$ profile

Do other galaxies have bumps in rotation curves?

Rotation Curves of Galaxies

$$
\begin{gathered}
\text { Cored isothermal profile with scale } 4 \mathrm{Kpc} \\
\text { Total mass: } 3.10^{12} \text { solar masses }
\end{gathered}
$$

Halo density on scale of 30 Kpc

Longitude fits for $1 / r^{2}$ profile with/w.o. rings
$\mathcal{W I T H O U I}$ rings $\mathcal{E}>0.5 \mathrm{GeV} \quad \mathcal{W} I \mathcal{T H} 2$ rings

$\mathcal{H a l o}$ parameters from fit to 180 sky directions: 4 long. profiles for Catitudes $<5^{\circ}, 5^{\circ}<6<10^{\circ}, 10^{\circ}<6<20^{\circ}, 20^{\circ}<6<90^{\circ} \quad(=4 \times 45=180$ directions,

$\mathcal{B E L O}$ W 0.5 GeV

$\mathfrak{A B O} \mathcal{V} E 0.5 \mathrm{GeV}$

Eric Hayashi \& Julio Navarro

$$
\begin{aligned}
& \text { What about } \\
& \text { Supersymmetry? } \\
& \text { Assume mS UIGRA } \\
& 5 \text { parameters: } m_{0,} m_{1 / 2}, \operatorname{tanb}, \mathcal{A}, \operatorname{sign} \mu
\end{aligned}
$$

in $m_{0}-m_{1 / 2}$ plane $\left(\boldsymbol{\mu}>0, \mathcal{A}_{0}=0\right)$

tan=5

$\tan =50$

For $\mathcal{W M} \mathcal{M P} \chi$-section of $\langle\sigma v\rangle \cong 2.10^{-26} \mathrm{~cm}^{3} / \mathrm{s}$ one needs large $\tan \beta$

MS UGRA can fulfill

all constraints from $\mathcal{W} \mathfrak{M A} \mathcal{A}$, $\mathcal{L E P}, 6->s \gamma, g-2$ and $E G R E T$ simultaneously, if $\mathcal{D M}$ is neutralino with mass
in range 50-100 GeV and squarks and sleptons are
O(1 TeV)

Stau coannihilation

$$
m_{A}=2 m_{x}
$$

- boost > 100
- excl. LSP

1500

$\stackrel{N}{2} 2000$
 E

no EWSB

> If it fappens that other SUSY particles are around at the freeze-out time, they may coannifilate with $\mathcal{D M}$. E.g. Stau + Neutralino - > tau

> Chargino + Neutralino - > W

```
However, this requires extreme fine tuning of masses, since number density drops exponentially with mass.
```

But more serious: coannifilation will cause excessive boostfactors $\sigma_{a n n i}=\sigma_{\text {coanni }}+\sigma_{\text {selfanni }}$ must yield $\langle\sigma \boldsymbol{\sigma}\rangle=2 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}$. This means if coannifilation dominates, selfannifilation $\cong 0$ In present universe only selfannifilation can fappen, since only lightest neutralino stable, other SUSY particles decayed, so no coannifilation. If selfannifilation x-section 0 , no indirect detection. CONCLUS ION: EGRET data excludes largely coannif. compatible with WMAP AND EGRET

$\mathcal{L S P}$ largely Bino $\Rightarrow \mathcal{D M}$ is supersymmetric partner of $\subset \mathcal{C M B}$

Cfarginos, neutralinos and gluinos ligft

Unification of gauge couplings

With S USS spectrum from EGRET data and start values of couplings from final LEP data perfect gauge coupling unification possible

EGRET excess: $\quad \mathcal{L S P}$ light
Higgs mass:
squarks and sleptons feavy
Question: wfich diagram dominates $\mathcal{L S} P$ annifilation?

Answer: pseudoscalar Higgs exchange, since
a) sfermion exchange suppressed by heavy sfermions
6) Z-exchange and coannifilation suppressed by requiring boostfactor below 200
c) \mathcal{W}, Z production suppressed by phase space (and couplings)

Canget estimate on pseudo scalar Higgs masses
WITHO UI relying on EWS B. and RGE by combining
a) $\mathcal{W} \mathcal{M A P}$ relic density
6) $\mathcal{D M}$ interpretation of EGRET excess
c) Chargino limits to limit $|\mu|$

Neutralino Annifilation Final States

Dominant Diagram for $\mathcal{W} \mathcal{M A} \mathcal{P}$ cross section:
$\chi+\chi \Rightarrow \mathcal{A} \Rightarrow 6$ 66ar quark pair

\mathcal{B} - fragmentation well studied at LEP! Yield and spectra of positrons, gammas and antiprotons well known!

Z-exchange $\propto \mathcal{N}_{3,4}^{2}$ with both s - and p-wave \mathfrak{A}-exchange $\propto \mathcal{N}_{1} \mathcal{N}_{3,4}$ only s-wave (p-independent)
$\mathcal{H e} a v y$ Higgses below 500 GeV for 70 GeV LSP


```
\(\mathcal{M}_{\mathcal{A}}\) around 200-500 GeV for \(\langle\sigma v\rangle=2.10^{-26} \mathrm{~cm}^{3} / \mathrm{s}\)
\(\mathcal{A N D}\) chargino > 104 GeV . INNDEPENDDEN(I of EWS \(\mathcal{B}\) and RGE.
```

Spin-independent

Spin-dependent

Predictions from EGRET data assuming Supersymmetry

EGRET EXCESS TRACES DM, AS DEMO NS TRATED BY PREDICTION O F ROIATION CURVE $\mathcal{F R O} \mathcal{M}$ GAMMMA RAYS .
$\mathcal{T H E R E F O} O \mathcal{R E} \mathcal{T H}$ S IS FIRST (>10б) INTRI GUINGG HINT Of $\mathcal{D} M A$.

SUMMARY

This result is INNDEPENVDENT of galactic models, only dependent on the $\mathcal{S H} \mathcal{H P E S}$ of contributions to diffuse gamma ray spectrum! Fitted normalizations consistent with expectations.

Conventional models CANNNOT explain spectrum of gamma rays in $\mathfrak{A L L}$ directions, $\mathcal{D M}$ density profile, peculiar shape of rotation curve, stability of ring of stars at 14 Kpc , stability of ring of molecular hydrogen at $4 \mathrm{Kpc}, \ldots$

S UMMARX

Predicted S USS \mathcal{Y} spectrum from EGRET and $\mathcal{W} \mathcal{M A} \mathcal{P}$ VERY favourable for line ar collider:

- light $\mathcal{H} i g g s$, charged $\mathcal{H} i g g s, ~ c h a r g i n o$, and top all within reach of Te $I \mathcal{L C}$
- S quarks and sleptons for $\mathcal{L H C}$

