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Heavy Flavor Production

We are interested in processes of the following type:

A + B −→ H(Q, m) + X

where:

• A, B - Initial state particles:e+e−, p, p̄, etc.,

• H - Heavy flavored hadron (for exampleB-meson),

• Q - heavy quark (b or c) with massm.

We are also interested in measuring certain properties of the produced

hadronH:

• Transverse momentum,

• Energy distribution, etc.

Example:B-production ine+e−, p, p̄, top-decay, etc.
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The processes of this kind are characterized by two scales:

• Q - hard scale,

• m - quark mass.

with m >> Λ. For example, forb, c quarksmb,c ∼ O(10)Λ.

For the present presentation we will consider processes forwhich:

Q >> m

This assumption is:

I. experimentally relevant for colliders where (typically)Q ≥ mZ .

II. guarantees the factorization of long- and short-distance physics,

III. makes perturbative treatment possible sincem >> Λ is a natural cut-
off for collinear radiation.

IV. The hadronH is produced at a scaleµ ∼ m from the fragmentation
of the heavy quarkQ:

Q (+q̄) −→ H
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What happens if the assumptionQ >> m is not quite applicable ?

Example is the transverse momentum distribution of hadrons. In that process

the hard scale isQ ∼ pT (for largepT ).

• One has to account for power corrections ofm.

• In this formalism one can consistently treat the asymptoticregime

Q >> m and can extend it to include power corrections from FO

calculations if needed.

Such study was successfully applied at NLO + NLL for b-production at

the Tevatron (Cacciari et al. hep-ph/0312132).
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In the asymptotic regimeQ >> m one applies the Factorization Th. to the

processA + B → H + X:

dσH = (fA→afB→b) ⊗ dσab→Q ⊗ Dn.p.
Q→H(z)

where:

• dσH - hadronic observable (pT , E-distribution) ,

• dσQ - partonic ”observable”,

• Dn.p.
Q→H(z) - Non-Perturbative fragmentation function,

• z - energy or momentum fraction;0 ≤ z ≤ 1.

Note: The presence of pdf’s is irrelevant for our discussion.
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Note:Dn.p.
Q→H(z) is:

• a universal, process-independent(but not unambiguous)quantity ,

• extracted from experimental data (much like pdf’s),

• its extraction from one process (typicallye+e−) must be consistent
with its application to another process.

Examples:

• energy spectrum (EH = zEQ):

dσH

dz
=

dσab→Q

dz
⊗ Dn.p.

Q→H(z)

• pT -distribution (pT,H = zpT,Q):

dσH

dpT
=

dσab→Q

dpT
⊗ Dn.p.

Q→H(z)

However:Since what we measure isdσH thenDn.p. is scheme dependent
because it depends on the treatment of the perturbative part!
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Perturbative part

Let’s turn our attention todσab→Q(Q, m, z) :

Sincem > 0, dσab→Q is finite. However that function contains large
quasi-collinear logs:

αn
s lnk

(
m2

Q2

)
; k ≤ n

to all orders inαs.

The presence of those logs indicates the breakdown of perturbation series
in the asymptotic regimeQ >> m. One has to resum (classes of) such
logs.

How do we resum?

Step one:Factorization=⇒ Evolution. This is well known;µF emerge
and from:

d

dµF
Observable = 0,

we get the DGLAP equation.
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Physical interpretation ofH-production:

1) we first produce parton ”a” at large scaleQ with pT >> m; the parton
behaves as massless.

2) The parton ”a” radiatespT down to scalepT ∼ m and perturbatively
fragments into massive quarkQ.

3) Non-perturbative hadronizationQ −→ H at a scale set bym.

Therefore we write:

dσQ(Q, m, z) =
∑

a

d̂σa(Q, µ, z) ⊗ Da→Q(µ, m, z)

where:

• d̂σa - usual coefficient function for producing partona. The collinear
divergences are subtracted in theMS scheme:

dσa(Q, ǫ, z) = Γab(ǫ, µ) ⊗ d̂σb(Q, µ, z)
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• d̂σa contains all process dependence. Insensitive to low energy.

• Da→Q(µ, m, z) - Perturbative Fragmentation Function (PFF).

• PFF is a process independent solution of the DGLAP equation that

describes the transition:
a(µ) −→ Q(m)

The PFF can be decomposed as:

Da→Q(µ, m, z) = Eab(µ, µ0, z) ⊗ Dini
b→Q(µ0, m, z)

with Eab(µ0, µ0, z) = δabδ(1 − z).

Note: GivenDini(µ0) one can completely specify the PFF !

Step two:Evolution=⇒ Resummation.

Let us chooseµ ∼ Q ; µ0 ∼ m. Then:

• d̂σ(Q, µ) andDini(µ0, m) cannot contain large logs,

• Can be computed perturbatively.
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This way, all large logs are absorbed in the functionEab(µ, µ0, z) and are

resumed with the DGLAP equation to all orders inαS .

Thereforeto achieve resummation up to logarithmic ordern, one needs the

initial condition to ordern and the splitting functions to the same order.

Dini
a→Q(µ0, m, z) = δaQδ(1 − z) +

αs

2π
d
(1)
a→Q

+
(αs

2π

)2

d
(2)
a→Q

+ . . .

= LL + NLL + NNLL + . . .

• d(1) - computed by Mele and Nason (1991).

• We have evaluatedd(2)
a→Q

for a = Q, Q, q, q, gluon.

Collect all pieces:

dσH = (f...)⊗d̂σa(Q, µ)⊗Eab(µ, µ0)⊗Dini
b→Q(µ0, m)⊗Dn.p.

Q→H+O(m/Q)p
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At present,Dn.p. has been extracted with NLO+NLL accuracy.

The Aleph data (hep-ex/0106051):
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... and the result from the NLO+NLL extraction (M. Cacciari, G. Corcella
and A.M.; hep-ph/0209204):

• Solid line: power law∼ xa(1 − x)b.

• Dashes: Kartvelishvili et al.

• Dots: Peterson.

Note: the above figure represents the convolution ofDn.p. with the pertur-
bative part for top decay.
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CanDn.p. be extracted at NNLO + NNLL at present frome+e−?

• The missing ingredient are the NNLO time-like splitting functions.

• The coefficient function is known,

• Dini is available,

• Note that our result forDini at orderα2
S can be used to extract con-

stants needed to promote the soft-gluon resummation ofDini (for large

z) with NNLL accuracy.

Other options:

• The largest uncertainty is from the fits to the existing LEP data.

• A run of ILC in GigaZ regime is expected to improve the LEP data

(and particularly the one onb-fragmentation) 2-3 times.

A. Mitov LCWS05 03/21/2005



Is NNLO+NNLL needed?

• Reduced scale dependence,

• Improvedz → 1 behavior,

• Extraction ofDn.p. with smaller sensitivity to non-perturbative physics.

However one must also apply such result to other processes that are evalu-

ated with NNLL+NNLO.

Feasible in view of the present advances in NNLO calculations.
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Example:A non-trivial application is theb-spectrum in top decay at NNLO+NNLL.

Presently known at NLO+NLL.

Another excellent example:recent analysis ofb-production at the Tevatron

(Cacciari, Nason,...).

Observation:Consistent treatment ofdσB/dpT as above with:

• NLL resummation,

• NLL+NLO for low pT ,

• Consistent extraction ofDn.p.,

leads to dramatic shift in the theoretical prediction.
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Applications of the Perturbative Fragmentation Function:

F.O. results

A parton level result is of the form:

dσQ(Q, m) = d̂σa(Q, µ) ⊗ Eab(µ, µ0) ⊗ Dini
b→Q(µ0, m) + O(m2/Q2)

Let us ignore all terms that are beyond given Fixed Ordern by (formally)
settingµ = µ0 above (i.e.Eab = 1). We get:

dσf.o.
Q

(Q, m) =
∑

a

d̂σa(Q, µ) ⊗ Dini
a→Q(µ, m) + O(m2/Q2)

•Dini is process independent=⇒ one can compute spectra of massive par-
ticles from pure massless calculations. Great simplification beyond NLO.

• Dini (similarly to its time-like counterpart) relates masslessMS subtrac-
tions to massive calculations.

Recall: that relation was used to first deriveDini at NLO.
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Example:electron spectrum inµ-decay (QED):

dΓ(µ)

dze
= · · ·+α2

(
c2(ze) ln2

(
mµ

me

)
+ c1(ze) ln

(
mµ

me

)
+ c0(ze) + O(m2

e/m2
µ)

)

• The constantsc2 andc1 are known (they are fixed from the NLO result

and from the evolution equation).

• Dini together with a calculation of that process with massless electron

at orderα2 are sufficient to determine the constantc0(z).
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Applications of the Perturbative Fragmentation Function:

All order resummations with NNLL

Consider ,say,b-quark production:

dσb

dz
=

d̂σa

dz
⊗ DPFF

a→Qb
+ O(m2/Q2)

At present done at NLO + NLL.

Note: at largez → 1 additional large logs∼ lnk(1 − z)/(1 − z) appear.

• They need to be resummed too. Those logs appear both in the coeffi-
cient function and in the initial condition.

• The resummation of those soft logs lead to improvement in thelarge
z part of the spectrum.

Example:The effect of the soft-gluon resummation at largez for b-energy
spectrum in top decay:
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b-quark spectrum for differentµF (M. Cacciari, G. Corcella, A.M.)

• Three different values ofµF = 2mt, mt, mt/2.

• Other scales:µ = mt andµ0F = µ0 = mb.
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A process independent derivation ofDini

• Previously applied to NLO by Keller and Laenen; Cacciari andCatani.

• Based on the factorization of short- and long-distance physics in an arbi-

trary hard scattering process:

k1

kn

p
q1

q3
q2Π

The momentaq1,2,3 are collinear i.e.q1 + q2 + q3 = p + O(qT )
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We work in physical gaugeAµnµ = 0. In such case no contribution from

interference diagrams.As a resultthe collinear splitting effectively decou-

ples from the rest of the process.

One also uses the factorization of both matrix elements and phase space in

the collinear limit :

|M (n+3)(k1, . . . , kn, q1, q2, q3)|
2 = |M (n+1)(k1, . . . , kn, p)|2W (q1, q2, q3)

and

dPS(n+3)(k1, . . . , kn, q1, q2, q3) = dPS(n+1)(k1, . . . , kn, p) dΦcoll(q2, q3)

The functionsDini can now be obtained by integrating the factorW over

the momenta of the unobserved collinear partons, i.e.dΦcoll(q2, q3).
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Evaluation of the functionDini.

• We have modified significantly the original method; the new formula-

tion is suitable for evaluation beyond NLO and for inclusionof the virtual

diagrams.

• As a result we have to evaluate ”processes” like:

q1

q3

q20-loop

q1

q2

1-loop q12-loop

• ... and then to project out the fragmentation component (applying power

counting arguments in the collinear limit).
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Various components to PFF and the participating sub-processes at tree-

level:

I. Dini
Q→Q :

• Q → Q + g + g,

• Q → Q + q + q,

• Q → Q + Q + Q.

II. Dini
Q→Q

:

• Q → Q + Q + Q.

III. Dini
q(q)→Q

:

• q(q) → Q + Q + q(q).

IV. Dini
g→Q :

• g → Q + Q + g .
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Evaluation of the integrals

• We evaluate the integrals using the IBP identities,

• Algebraically reduce the contributions from all diagrams to∼ 20 Mas-
ter Integrals, containing single scale (m) and a single variable (z),

• We use light cone gauge: no particular problems at one (virtual) loop

• interesting contributions from the gluon initiated component. Con-
tains terms behaving as|1 − 2z| that we have interpreted as threshold
production of a heavy pair. They originate from the diagram:

Q
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Properties ofDini at orderO(α2
S):

• The result satisfy the fermion number conservation condition (by con-

struction): ∫ 1

0

dz
(
Dini

Q/Q(z) − Dini
Q/Q

)
= 1.

• The Non-Singlet term∼ nf coinsides with the known result in the

largeβ0-limit (Cacciari and Gardi).

• The limitz → 1 : our result reproduces the NLL ”soft-logs”α2
s lnk(1−

z)/(1− z) for k = 3, 2, 1 from the known result for the soft-gluon re-

sumed initial condition (Cacciari and Catani). Also from our result

one can extract the constantH(2) that is needed to promote the soft-

resummation to NNLL accuracy.
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Conclusions:

• We have calculated all components of the initial condition for the per-

turbative fragmentation function at orderα2
s (NNLO), thus extending

the PFF formalism to NNLL level.

• We followed a process independent approach for the computation of

Dini that exploits the universal behavior of the collinear radiation.

• To evaluate the two-loop integrals we apply powerful techniques for

multi-loop calculations: IBP, reduction to MI’s and their solving.

• I discussed the general properties of our result as well as the checks

with partial results existing in the literature.

• I discussed some of the many possible applications of our result, like:

• Fixed order spectra for heavy particles from massless results,

• Resummations of quasi-collinear logs with NNLL accuracy and accu-

rate extraction of non-perturbative fragmentation function from data.
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