SUDAKOV LOGARITHMS in N³LL APPROXIMATION

J.H. Kühn, Karlsruhe

with B. Feucht, A. Penin, V. Smirnov

J.H. Kühn, A.A. Penin; hep-ph/9906545
J.H. Kühn, A.A. Penin, V.A. Smirnov; Eur. Phys. J. C17 (2000) 97
J.H. Kühn, S. Moch, A.A. Penin, V.A. Smirnov; Nucl. Phys. B616 (2001) 286
B. Feucht, J.H. Kühn, S. Moch; Phys. Lett. B561 (2003) 111
B. Feucht, J.H. Kühn, A.A. Penin, V.A. Smirnov; Phys. Rev. Letts. 93 (2004) 101802

- Introduction
- Four fermion scattering
- Form factors at two loop
- Z-boson production
- Summary

One-Loop

example: massive U(1)

$$M \qquad \Rightarrow \text{ Born} * \left[1 + \frac{\alpha}{4\pi} \left(-\ln^2 \frac{s}{M^2} + 3\ln \frac{s}{M^2} - \frac{7}{2} + \frac{\pi^2}{3} \right) \right]$$

magnitude $\left(\frac{\alpha_w}{4\pi} = 3 \cdot 10^{-3}\right)$

$\frac{s}{M^2}$	$-\ln^2 \frac{s}{M^2}$	$+3 \ln \frac{s}{M^2}$	$-\frac{7}{2}+\frac{\pi^2}{3}$	Σ	$*\frac{4}{4}\frac{\alpha_w}{4\pi}$
$\left(\frac{1000}{80}\right)^2$	-25.52	+15.15	-0.21	-10.6	-13%
$\left(\frac{2000}{80}\right)^2$	-41.44	+19.31	-0.21	-22.3	-27%

(four-fermion cross section \Rightarrow factor 4)

Two-Loop

Four-fermion processes, status:

- LL: Fadin et al. (2000)
- NLL: J.H.K., Penin, Smirnov (2000) Large (!) subleading corrections important angular dependent terms
- NNLL: J.H.K., Moch, Penin, Smirnov (2001) Large (!) NNLL terms, oscillating signs of LL, NLL, NNLL ⇒ compensations

 \Rightarrow N³LL and constant terms desirable

additional complication in SM: massless photon

 $|Q^2| \gg M_{W,Z}^2 \gg m_{\gamma}^2$

Four fermion scattering

examine
$$f'\bar{f}' \to f\bar{f}$$

$$A_B = \frac{ig^2}{s} \sum_{I,J=L,R} \left(T_{f'}^3 T_f^3 + \tan^2 \Theta_W \frac{Y_{f'}Y_f}{4} \right) A_{IJ}^{f'f} \text{ with } A_{IJ}^{f'f} = \left(\bar{f}_I' \gamma^\mu f_I' \right) \left(\bar{f}_J \gamma_\mu f_J \right)$$

corrections from photon radiation up to cutoff $\omega \ll M_{W,Z}$ must be taken into account separately (prescription of Fadin et al.).

define

$$L(s) = \frac{g^2}{16\pi^2} \ln^2 \left(\frac{s}{M^2}\right) = 0.07 \quad (0.11)$$
$$l(s) = \frac{g^2}{16\pi^2} \ln \left(\frac{s}{M^2}\right) = 0.014 \quad (0.017)$$
$$a = \frac{g^2}{16\pi^2} = 0.003$$

for $\sqrt{s} = 1$ TeV (2 TeV)

result (based on evolution equations):

$$\sigma/\sigma_{\mathsf{B}}(e^+e^- \to Q\bar{Q}) = 1 - 1.66 L(s) + 5.31 l(s) - 15.86 a + 1.93 L^2(s) - 9.43 L(s) l(s) + 29.73 l^2(s)$$

$$\sigma/\sigma_{\mathsf{B}}(e^+e^- \to q\bar{q}) = 1 - 2.18 L(s) + 20.58 l(s) - 36.34 a + 2.79 L^2(s) - 50.06 L(s) l(s) + 295.12 l^2(s)$$

$$\sigma/\sigma_{\mathsf{B}}(e^+e^- \to \mu^+\mu^-) = 1 - 1.39 L(s) + 10.12 l(s) - 31.33 a + 1.42 L^2(s) - 18.43 L(s) l(s) + 99.89 l^2(s)$$

(result very close to J.K., Penin, hep-ph/9906545!)

NLL terms confirmed by diagrammatic calculation

Pozzorini

subleading terms important \rightarrow evaluate N^3LL and N^4LL

first step: form factor

Form factors at two loop

A) Form Factor and Evolution Equations

Born:

$$\mathcal{F}_{\mathsf{Born}} = ar{\psi}(p_2) \gamma_\mu \psi(p_1)$$

$$\frac{\partial}{\partial \ln Q^2} \mathcal{F} = \left[\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \gamma(\alpha(x)) + \zeta(\alpha(Q^2)) + \xi(\alpha(M^2)) \right] \mathcal{F}$$
Collins, Sen

$$\Rightarrow \mathcal{F} = \mathcal{F}_{\text{Born}} F_0(\alpha(M^2)) \exp\left\{\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \left[\int_{M^2}^{x} \frac{\mathrm{d}x'}{x'} \gamma(\alpha(x')) + \zeta(\alpha(x)) + \xi(\alpha(M^2))\right]\right\}$$

aim: N⁴LL \Rightarrow corresponds to all terms of the form: $\alpha^{n} \left[\ln^{2n} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-1} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-2} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-3} \left(\frac{Q^{2}}{M^{2}} \right) + \ln^{2n-4} \left(\frac{Q^{2}}{M^{2}} \right) \right]$ LL NLL NNLL N³LL N⁴LL

NNLL (previous result) requires running of α (i.e. β_0 and β_1) and: $\zeta(\alpha), \xi(\alpha), F_0(\alpha)$ up to $\mathcal{O}(\alpha)$ $\gamma(\alpha)$ up to $\mathcal{O}(\alpha^2)$

N³LL requires two-loop calculation in high-energy limit including linear logarithms (available for non-abelian theory)

N⁴LL requires complete two-loop calculation in high-energy limit (available for abelian theory)

B) Two-Loop Results

Massive U(1) Model

$$\mathcal{F}_{\alpha}(M,Q) = \mathcal{F}_{\text{Born}}\left[1 + \frac{\alpha}{4\pi}f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \ldots\right]$$

$$f^{(1)} = -\mathcal{L}^{2} + 3\mathcal{L} - \frac{7}{2} - \frac{2}{3}\pi^{2}$$

$$f^{(2)} = \frac{1}{2}\mathcal{L}^{4} - 3\mathcal{L}^{3} + \left(8 + \frac{2}{3}\pi^{2}\right)\mathcal{L}^{2} - \left(9 + 4\pi^{2} - 24\zeta_{3}\right)\mathcal{L}$$

$$+ \frac{25}{2} + \frac{52}{3}\pi^{2} + 80\zeta_{3} - \frac{52}{15}\pi^{4} - \frac{32}{3}\pi^{2}\ln^{2}2 + \frac{32}{3}\ln^{4}2 + 256\operatorname{Li}_{4}\left(\frac{1}{2}\right)$$

$$\mathcal{L} \equiv \ln(Q^{2}/M^{2})$$

NNLL in agreement with previous results!

numerically:

$$f^{(1)} = -\mathcal{L}^2 + 3\mathcal{L} - 10.1$$

$$f^{(2)} = +0.5\mathcal{L}^4 - 3\mathcal{L}^3 + 14.6\mathcal{L}^2 - 19.6\mathcal{L} + 26.4$$

rescaling of argument of \mathcal{L} : $M \to e^{3/4}M \Rightarrow \text{NLL} \to 0$

$$f^{(1)} = -\hat{\mathcal{L}}^2 - 7.8$$

$$f^{(2)} = +0.5\,\hat{\mathcal{L}}^4 + 7.8\,\hat{\mathcal{L}}^2 + 10.6\,\hat{\mathcal{L}} + 22.2$$

$$\hat{\mathcal{L}} \equiv \ln\left(\frac{Q^2}{(e^{3/4}M)^2}\right)$$

J.H. Kühn/ LCWS 05/ SLAC

11

Two-loop result $f^{(2)}$:

with M = 80 GeV, $\frac{\alpha}{4\pi} = 3 \cdot 10^{-3}$

C) Massive SU(2) form factor in 2-loop approximation

2-loop vertex diagrams (massless fermions, massive bosons):

+ 1-loop×1-loop corrections + renormalization

Size of the logarithmic contributions

2-loop form factor F_2 at Q = 1 TeV (in 1/1000):

Abelian
$$(C_F^2)$$
: $+0.3 \ln^4 - 1.7 \ln^3 + 8.2 \ln^2 - 11 \ln + 15$
+1.6 -2.0 $+1.9$ -0.5 $+0.1$
non-Abelian $(C_F C_A)$: $+ 1.8 \ln^3 - 14 \ln^2 + 46 \ln - \dots$
+2.1 -3.3 $+2.1$
Higgs: $-0.04 \ln^3 + 0.5 \ln^2 - 2.3 \ln + \dots$
 -0.04 $+0.1$ -0.1
fermionic $(C_F T_F n_f)$: $-0.5 \ln^3 + 4.8 \ln^2 - 13 \ln + 21$
 -0.6 $+1.1$ -0.6 $+0.2$
 $\ln^{4.3.2}$: J.H.K, Moch, Penin, Smirnov

- \rightarrow growing coefficients with alternating signs
- \Rightarrow cancellations between logarithmic terms
- \hookrightarrow NNLL approximation is not enough!

Abelian & fermionic contribution: $\ln^1 \text{ small}$, $\ln^0 \text{ negligible} \Rightarrow N^3 LL \text{ approximation}$ including \ln^1 is sufficient (non-Abelian \ln^0 more difficult)

Massive SU(2) form factor in 2-loop approximation: result

$$\alpha^{2}F_{2} = \left(\frac{\alpha}{4\pi}\right)^{2} \left[\left. + \frac{9}{32} \ln^{4} \left(\frac{Q^{2}}{M^{2}}\right) - \frac{19}{48} \ln^{3} \left(\frac{Q^{2}}{M^{2}}\right) - \left(-\frac{7}{8}\pi^{2} + \frac{463}{48}\right) \ln^{2} \left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{39}{2} \frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4} \frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right) \ln \left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{39}{2} \frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4} \frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right) \ln \left(\frac{Q^{2}}{M^{2}}\right) \right] \\ \left. + \left(\frac{10}{3} \frac{1000}{100} + \frac{1000}{200} + \frac{1000}{$$

J.H. Kühn/ LCWS 05/ SLAC

Massive SU(2) form factor in 2-loop approximation: individual contributions

(N³LL approximation, $M_{\text{Higgs}} = M$, $n_f = 3$, Feynman-'t Hooft gauge)

U(1)×U(1) Model useful for QED×Weak and QCD×EW $(\alpha, M) \times (\alpha', \lambda)$

factorization for $Q^2 \gg M^2 \gg \lambda^2$:

$$\mathcal{F}_{\alpha',\alpha}(\lambda, M, Q) = \tilde{F}_{\alpha',\alpha}(M, Q) \underbrace{\mathcal{F}_{\alpha'}(\lambda, Q)}_{\text{as before}} + \mathcal{O}(\lambda/M)$$

$$\Rightarrow \tilde{F}_{\alpha',\alpha}(M,Q) = \left[\frac{\mathcal{F}_{\alpha',\alpha}(\lambda,M,Q)}{\mathcal{F}_{\alpha'}(\lambda,Q)}\right]_{\lambda \to 0}$$

evaluated with dimensional regularization for IR singularities

$$\tilde{F}_{\alpha',\alpha}(M,Q) = 1 + \frac{\alpha}{4\pi} f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \frac{\alpha'\alpha}{(4\pi)^2} \tilde{f}^{(1,1)} + \dots$$
$$\tilde{f}^{(1,1)} = \left(3 - 4\pi^2 + 48\zeta_3\right) \mathcal{L} - 2 + \frac{20}{3}\pi^2 - 84\zeta_3 + \frac{7}{45}\pi^4$$

important observation: no \mathcal{L}^2 terms \Rightarrow consistent with evolution equations J.H.K., Penin, Smirnov (2000)

Complete result for
$$\tilde{f}^{(1,1)}(z)$$
 available in analytical form $(z = \frac{Q^2}{M^2})$
Kotikov, J.H.K., Veretin

Exponentiation, Factorization and Matching

Massive U(1) Theory

5 terms in the two-loop result $\Rightarrow N^4LL$ approximation in all orders:

$$\mathcal{F}_{\alpha}(M,Q) = \exp\left\{\frac{\alpha}{4\pi} \left[-\mathcal{L}^{2} + \left(3 + \frac{\alpha}{4\pi} \left(\frac{3}{2} - 2\pi^{2} + 24\zeta_{3}\right) + \mathcal{O}(\alpha^{2})\right)\mathcal{L}\right]\right\} \mathcal{F}_{\alpha}(M,M)$$

$U(1) \times U(1)$ Theory

matching relation: $\mathcal{F}_{\alpha',\alpha}(M,M,Q) = C_{\alpha',\alpha}(M,Q) \,\tilde{F}_{\alpha',\alpha}(M,Q) \,\mathcal{F}_{\alpha'}(M,Q)$

$$\Rightarrow C_{\alpha',\alpha}(M,Q) = 1 + \frac{\alpha'\alpha}{(4\pi)^2} \left[\frac{59}{4} + \frac{70}{3}\pi^2 + 244\zeta_3 - \frac{113}{15}\pi^4 - \frac{64}{3}\pi^2 \ln^2 2 + \frac{64}{3}\ln^4 2 + 512\operatorname{Li}_4\left(\frac{1}{2}\right) \right]$$

- no logarithmic terms!
- $\tilde{F}_{\alpha',\alpha}(M,Q) \mathcal{F}_{\alpha'}(\lambda,Q)$ approaches $\mathcal{F}_{\alpha',\alpha}(\lambda,M,Q)$ for $\lambda \to M$ in N³LL accuracy!
- all logs in theory with mass gap are obtained from symmetric phase

Z-boson production

J.H.K., Kulesza, Pozzorini, Schulze

Z-boson production at LHC with large p_T

 \rightarrow large electroweak corrections

results:

(a) Transverse momentum distribution for $pp \rightarrow Zj$ at $\sqrt{s} = 14$ TeV: LO (dotted), NLO (dashed) and NNLO (solid) result for unpolarised Z and LO contribution from longitudinally polarised Z (dash-dotted).

(b) Relative electroweak correction to the lowest order unpolarised p_T distribution for $pp \rightarrow Zj$ at $\sqrt{s} = 14$ TeV: 1-loop LLs+NLLs (dashed), 2-loop LLs (dashdotted) and 2-loop LLs+NLLs (solid).

Relative electroweak correction and statistical error for the unpolarised integrated cross section for $pp \rightarrow Zj$ at $\sqrt{s} =$ 14 TeV as a function of p_T^{cut} : (1+2)loop LL+NLL (solid), 2-loop LL (dashdotted) and 2-loop LL+NLL (dashed) correction and statistical error (shaded region) with respect to the lowest order cross section.

Summary

- Large logarithmic corrections at large energies
- NLL, N²LL, N³LL terms are important
- N³LL and N⁴LL (partly) available for form factor
- special role of massless bosons (γ and g) \rightarrow factorization of IR singularities
- first applications: LHC important issue for LC