Pulse stacking cavity at KEK-ATF

HONDA Yosuke (KEK) 20 Mar. /05 LCWS

- Laser wire beam size monitor
- Basics of an optical cavity
- Development of a pulse optical cavity
- Beam collision experiment with laser pulse in an optical cavity

Laser wire beam size monitor

- Beam profile measurement in the ATF damping ring.
 - Scan the beam with a thin laser target.
 - Measure the flux of the Compton scattering signal as a function of the laser position.
- Feature
 - Non-invasive measurement.
 - Separately measure each bunch in multi-bunch.
- Optical cavity
 - enhance the effective laser power
 - determine the properties of the laser

Example of the measurement

- Laser wire
 - laser: CW, 300mW, 532nm
 - cavity: 5.6micron (rms size), enhancement 660
- Electron beam
 - 5 micron (vertical size)
 - 2.8 nsec bunch spacing (multi-bunch)

Control of an optical cavity

- Cavity resonance
 - Mirror distance = integer of half wave length
 - High reflectance mirror
 - high power enhancement
 - narrow resonance width
 - difficult to keep the resonance condition

Development of a system with a pulse laser

electron bunch

compact ring accelerator

X-ray beam

build-up cavity

pulse laser beam

mag

- Change the CW laser to a pulsed laser
 - much higher peak intensity
 - high intensity signal
- Compact Compton X-ray source
 - quasi-monochromatic X-ray
 - pulse X-ray synchronized to a laser pulse
- Issues
 - bunch spacing determines the cavity length
 - it also determines the laser repetition
- Test experiment at ATF
 - proof-of-principle with a pulsed cavity system.
 - realize a collision and detect the Compton signal.

Optical cavity for a pulsed laser

- Resonance condition
 - phase relation
 - cavity length = integer of half wave length
 - envelope superposition
 - laser repetition = round trip time of the optical cavity.
 - it needs to be coincide with the repetition rate of the electron beam.

Development of an optical cavity

- Bunch repetition of ATF beam is 357 MHz
- Laser oscillator
 - wavelength 1064nm
 - 357MHz,400mW
 - pulse length 7ps(FWHM)
 - passive mode-lock
- Cavity
 - length 21cm (714MHz)
- Mirror
 - reflectance 99.7%
 - curvature 250 mm
- Enhancement
 - ~1000 with 714MHz laser.
 - ~500 with 357MHz laser.

Cavity reflection

Installation

- Installed in Oct.2004.
- One of the laser wire monitor (for horizontal size measurement) was replaced to this system.
 - use same detector
- Entire optical system (and the chamber) is mounted on a movable table.

Timing system

- Laser timing (repetition) is locked to ATF beam.
- LW cavity is controlled to keep the resonance, then the laser pulse inside the cavity is automatically synchronized to the beam.

Preliminary result

- Position scan
 - unlocked to the beam (random timing), and locked
 - beam size of laser is 120 um, which dominates the measured profile.
- Timing (phase) scan
 - pulse length of laser is 7 ps. It can be a bunch length monitor.

Preliminary result

- Longitudinal bunch structure measurement.
- Unlock the laser repetition, and add a small frequency offset on the laser rep-rate.
 - collision on random timing
- signal detection
 - relative phase of laser and electron
 - energy
- Four chances to collide in one cycle of the repetition.
 - two-fold optics
 - two chances in a round trip

Summary

- We have developed a laser wire beam size monitor based on an optical cavity technique.
- Replacing the cw laser to a pulsed laser enables us to expect a higher intensity Compton signal.
- We did a proof-of-principle experiment of such a pulsed cavity system at the ATF damping ring.