Comparison of photon colliders based on e^-e^- and e^+e^- beams.

Valery Telnov

(LCWS05, Stanford, March 18, 2005)

Why e⁺e⁻ beams for $\gamma\gamma$ are under discussion again?

It is always assumed that $\gamma\gamma$ collider is based on e⁻e⁻ beams. The answer to the question "why e⁻e⁻ beams are better than e⁺e⁻" is know in $\gamma\gamma$ community (V.Telnov, GG2001).

Now designers of the IP region have arisen this question again because some schemes of the final focus do not allow easy switching between e^+e^- and e^-e^- modes.

A short answer:

- study of e⁻e⁻ collisions is a part of physics program and e⁻e⁻ beams are necessary in any case;
- properties of $\gamma\gamma$ collisions based on e⁻e⁻ are much better (larger luminosity, much lower backgrounds), see below.

Luminosity

If damping rings are used, $L_{geom}(e^+e^-) = L_{geom}(e^-e^-)$. But there is difference in the degree of the polarization:

$$P_{e^{-}} = 85\%$$
, $P_{e^{+}} \sim 50\%$.

$$\left(\frac{dL}{dW\gamma\gamma}\right)_{peak} \propto \Pi_i \left[x + 1 + \frac{1}{x+1} + \lambda_i \frac{x(x+2)}{(x+1)} \right]$$

For x = 4.8 one gets

$$\left(\frac{dL}{dW\gamma\gamma}\right)_{\rm e^+e^-} \sim 0.82 \left(\frac{dL}{dW\gamma\gamma}\right)_{\rm e^-e^-}$$
0.56 for unpolarized e^+ .

Simulation of photon collider for TESLA beam parameters

	e ⁻ e ⁻	e ⁺ e ⁻
$N/10^{10}$	2	2
σ_z ,mm	0.3	0.3
σ_x ,nm	88	88
σ_y ,nm	4.3	4.3
L_{geom} , 10^{35}	1.2	1.2
$L_{\gamma\gamma}(z>$ 0.65)/ L_{geom}	0.1	0.1
$L_{\gamma\gamma}(tot)/L_{geom}$	0.92	5.6
$L_{\rm e^-e^-}/L_{geom}$	0.006	
$L_{e^{+}e^{-}}(z > 0.65)/L_{geom}$		0.062
$L_{\mathrm{e^+e^-}}(tot)/L_{geom}$		0.24

- Total(low energy) $\gamma\gamma$ luminosity with e⁺e⁻ beams is by a factor of 6 larger then with e⁻e⁻! The number of $\gamma\gamma \to hadr$ events per one beam collision is about 10!
- With e⁺e⁻ beams the $L(e^+e^-)$ and $L(\gamma\gamma)$ in the high energy region are comparable, it will be diffitult to separate e⁺e⁻ and $\gamma\gamma$ reactions

$\gamma\gamma$ luminosity spectra

with cuts on the longitudinal momentum;0,2 are total helicities of photons.

Luminosity measutement

Calibration processes in $\gamma\gamma$ collisions are $\gamma\gamma \to e^+e^- (\mu^+\mu^-)$.

Processes $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$ will give very large contribution. Using anglular distribution one can separate these processes, but this a serious additional problem.

Physical backgrounds

For $\gamma\gamma \to W^+W^-$ background is $e^+e^- \to W^+W^-$ Same problem for any charged pair.

 $\gamma\gamma\to H$ main background is QED $\gamma\gamma\to b\bar{b}$ which can be suppressed by choice of proper photon polarization.

However, $e^+e^- \rightarrow b\bar{b}$ is not suppressed! $\sigma_{e^+e^-} \propto (1-\lambda_e\lambda_{e^+}) \sim (1-0.8\cdot 0.6) \sim 0.5$, and $\sigma(e^+e^- \rightarrow b\bar{b}) > \sigma(\gamma\gamma \rightarrow b\bar{b})$, so $e^+e^- \rightarrow b\bar{b}$ gives very large background!

Disrupted beams

The r.m.s. angular spread of the disrupred beam at 2E = 500 GeV is narrower for e^+e^- colliding beams, but difference in tails is much less.

Moreover, at E > 250 GeV and $\lambda(laser) \sim 1~\mu\text{m}$, e⁺e⁻ pairs are produced at the conversion region in collisions of the high energy and laser photons (or at even lower energy due to nonlinear effects), then disruption angles with e⁺e⁻ and e⁻e⁻ and very similar.

Conclusion

For the photon collider e⁻e⁻ beams are much better than e⁺e⁻.

More stronger: e⁻e⁻ beams are absolutely necessary for the photon collider.