Final results for the SM Higgs-boson production in channel $\gamma\gamma \rightarrow h \rightarrow b\bar{b}$ at the Photon Collider

P. Nieżurawski, A. F. Żarnecki, M. Krawczyk

Faculty of Physics Warsaw University

Overview

Analysis of $\sigma(\gamma\gamma \rightarrow h \rightarrow b\bar{b})$ measurement

LCWS'04 Paris:

- NLO QCD background $\gamma\gamma \rightarrow Q\bar{Q}(g)$ (Q=c,b)
- \checkmark realistic $\gamma\gamma$ -spectra
- *b*-tagging
- overlaying events $\gamma\gamma \rightarrow hadrons$ (OE)
- crossing angle
- primary vertex distribution
- \Rightarrow results for SM with $M_h = 120, 130, 140, 150, 160 \text{ GeV}$

Overview

Analysis of $\sigma(\gamma\gamma \rightarrow h \rightarrow b\bar{b})$ measurement

NEW:

- $\gamma \gamma \rightarrow W^+W^-$ background contribution (polarized cross section)
- $\mathbf{P} \quad \gamma\gamma \to q\bar{q} \ (q = u, d, s)$ background contribution (unpolarized cross section)
- $\gamma \gamma \rightarrow hadrons$ (resolved) as a separate background contribution
- Full optimization of cuts
- Estimates of systematic uncertainties

 \Rightarrow results for SM with $M_h =$ 120, 130, 140, 150, 160 GeV

Tools

Photon-photon spectrum: COMPAZ

Signal: HDECAY, PYTHIA

Background:

■ NLO
$$\gamma\gamma \rightarrow Q\bar{Q}(g)$$
 for $Q = c, b$ (G. Jikia)

• $\gamma \gamma \rightarrow W^+ W^-$ (PYTHIA + polarized cross section)

$$\checkmark$$
 $\gamma \gamma \rightarrow q \bar{q}$ for $q = u, d, s$ (PYTHIA, unpolarized cross section)

• $\gamma \gamma \rightarrow \tau^+ \tau^-$ (PYTHIA).

Overlaying events $\gamma \gamma \rightarrow hadrons$ (PYTHIA) with realistic $\gamma \gamma$ -luminosity spectrum (V. Telnov)

Parton Shower (not for $Q\bar{Q}(g)$): PYTHIA

Fragmentation: PYTHIA (Lund)

Detector performance: SIMDET 4.01

Crab-wise crossing of beams

 $\alpha_c = 34 \text{ mrad}$

$\gamma\gamma \rightarrow hadrons$ events

Cross sections

Angular E_T -flow per bunch crossing.

Generation for $\sqrt{s_{ee}} = 210.5$ GeV.

NŻK

LCWS'0

SLAC

 \bigcirc

Reconstructed energy per bc

 $\gamma\gamma \rightarrow hadrons$

 $\sqrt{s_{ee}} =$ 210.5 GeV; $N_{OE}/{
m bc} \approx 1$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

NŻK

SLAC

– p.7/20

 θ_{TC}

$\gamma\gamma ightarrow h ightarrow bar{b}$ ($M_h=$ 120 GeV)

 $\sqrt{s_{ee}} =$ 210.5 GeV

 p_T^{jet}/E_T $\sqrt{s_{ee}}=$ 210.5 GeV

/S'05 P. N

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.8/20

 θ_{TC}

$\gamma\gamma ightarrow h ightarrow bar{b}$ ($M_h=$ 120 GeV)

 $\sqrt{s_{ee}} = 210.5 \text{ GeV}$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

 θ_{TC}

 $\gamma\gamma
ightarrow h
ightarrow bar{b}$ ($M_h = 120$ GeV)

X

NŻK

/S'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.9/20

Cuts

Cuts optimized by minimizing:

$$\frac{\Delta\sigma(\gamma\gamma \to h \to b\bar{b})}{\sigma(\gamma\gamma \to h \to b\bar{b})} = \frac{\sqrt{\mu_S + \mu_B}}{\mu_S}$$

For example:

Maximal value of $|\cos \theta_{jet}|$ over all jets in the event

All angular cuts

Detector mask Particles on Pythia level: $\cos \theta_{mask} \approx 0.99$

OE suppression Tracks & clusters: $\cos \theta_{TC} = 0.85$

 $\gamma \gamma
ightarrow Q ar{Q}(g)$ suppression Jets: $|\cos \theta_{jet}|^{\max} = 0.725$

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

– p.10/20

bb-tagging

bb-tagging

higgs-tagging at $M_h = 120$ GeV

higgs-tagging: a cut on the ratio of $\gamma \gamma \rightarrow h \rightarrow b\bar{b}$ to $\gamma \gamma \rightarrow b\bar{b}(g), c\bar{c}(g), q\bar{q} \ (q = u, d, s)$ events $\Rightarrow \varepsilon_h = 58\%$ $\varepsilon_{bb} = 50\%$ $\varepsilon_{cc} = 2.2\%$ $\varepsilon_{uds} = 0.16\%$ Without OE $\Rightarrow \varepsilon_h = 71\%$

 $arepsilon_{bb}=64\%$ $arepsilon_{cc}=2.9\%$ $arepsilon_{uds}=0.11\%$

Tighter cuts are needed due to OE contribution

LCWS'05

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

– p.13/20

Reconstruction & Selection

Selection of $b\bar{b}$ events for $M_h = 120$ GeV:

- OE suppression: clusters & tracks with $|\cos \theta_i| > \cos \theta_{TC} = 0.85$ ignored
- $W_{rec} > 1.2 W_{\gamma\gamma}^{\min}$ Jets: Durham algorithm, $y_{cut} = 0.02$
- **9** $N_{jets} = 2, 3$
- for each jet: $|\cos \theta_{jet}| < 0.725$
- $|P_z|/E < 0.1$

Rejection of W^+W^- events (for $M_h = 150$, 160 GeV):

- for each jet: $M_{jet} < 70 \text{ GeV}$
- energy below θ_{TC} : $E_{TC} < 90 \text{ GeV}$
- If or each jet: $N_{trk} \ge 4$

```
b-tagging: ZVTOP-B-HADRON-TAGGER (T. Kuhl)
```

Correction for crossing angle: jets boosted with $\beta = -\sin(\alpha_c/2)$

- p.14/20

$\mathbf{SM}, M_h = \mathbf{120} \ \mathbf{GeV}$

NŻK

150

- p.15/20

SM, $M_h = 120 \text{ GeV}$

Final results

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

SLAC

 \mathbf{i}

– p.16/20

SM, $M_h = 120 \text{ GeV}$

Final results

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

X

SM summary

For $M_h = 150$, 160 GeV additional cuts to reduce $\gamma \gamma \rightarrow W^+ W^-$.

P. Niezurawski, A. F. Żarnecki, M. Krawczyk

Influence of $\gamma \gamma \rightarrow hadrons$ events with $W_{\gamma \gamma} < 4 \text{ GeV}$

 $< E_{rec} > per \gamma \gamma \rightarrow hadrons$ event vs. $W_{\gamma\gamma}$

 $\gamma \gamma \rightarrow hadrons$ events with $W_{\gamma \gamma} < 4 \text{ GeV}$ would add on average $E \sim 0.1 \text{ GeV}$ per bc if $\theta_{TC} \approx 0.85$.

 $\sqrt{s_{ee}} = 210$ GeV.

- p.18/20

Systematic uncertainties

Influence of higher order corrections checked (PS applied for $\gamma \gamma \rightarrow Q\bar{Q}(g)$): $\Delta \sigma / \sigma$ stable. Influence of $\gamma \gamma \rightarrow hadrons$ with $W_{\gamma \gamma} < 4$ GeV: $\mathcal{O}(0.1)$ GeV per bc.

Background: 1/2 year run with lower beam energies \Rightarrow 3000 background events in mass window (2%)

Luminosity ($J_z = 0$): about 1% (V. Makarenko, K. Mönig, T. Shishkina, hep-ph/0306135)

Constrained maximum likelihood fit: 2.0% stat., 1.8% syst.

b-tagging (and other) efficiency:

• one year at $\sqrt{s_{ee}} = 419 \text{ GeV} \Rightarrow 26000 \ \gamma \gamma \rightarrow ZZ$ events, 5000 $Z \rightarrow b\bar{b} \Rightarrow 1.4\%$

9 3 months e^+e^- at $\sqrt{s_{ee}} = M_Z$ with the same detector: $\ll 1\%$!!!

- p.19/20

Conclusions

- All important theoretical and experimental aspects of the measurement taken into account.
- Optimal cuts per mass point.
- *higgs*-tagging: cut on the ratio of $\gamma\gamma \rightarrow h \rightarrow b\bar{b}$ to $\gamma\gamma \rightarrow b\bar{b}(g), c\bar{c}(g), q\bar{q}$ (q=u, d, s) events.
- High precision for measurement of the SM Higgs boson despite $\gamma\gamma \rightarrow hadrons$ overlaying events.
- Statistical precision of 2% for $\Gamma(h \to \gamma \gamma) BR(h \to b\bar{b})$ at $M_h = 120 \text{ GeV}$
- Systematic uncertainty about 2%.

