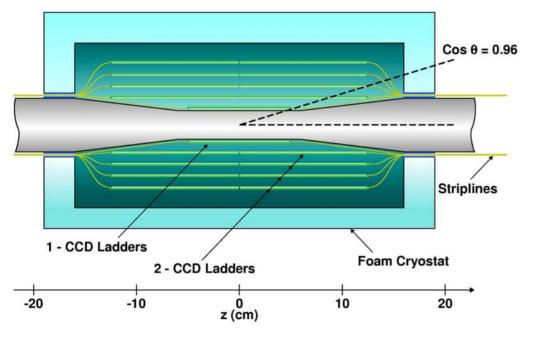

2005 International Linear Collider Workshop Stanford, 18 – 22 March 2005

Heavy flavour ID and quark charge measurement with an ILC vertex detector

Sonja Hillert (Oxford) on behalf of the LCFI collaboration


Introduction: Parameters to be optimised (future work)

Aim: optimise design of vertex detector and evaluate its physics performance

- verall detector design: radial positions (inner radius!) and length of detector layers, arrangement of sensors in layers, overlap of barrel staves (alignment), strength of B-field
- \succ material budget: beam pipe, sensors, electronics, support structure (material at large cos θ)
- > simulation of signals from the sensors: charge generation/collection, multiple scattering
- > simulation of data sparsification: signal & background hit densities, edge of acceptance

plan to extend current fast MC (SGV) to full simulation of effects in vertex detector

The standard detector

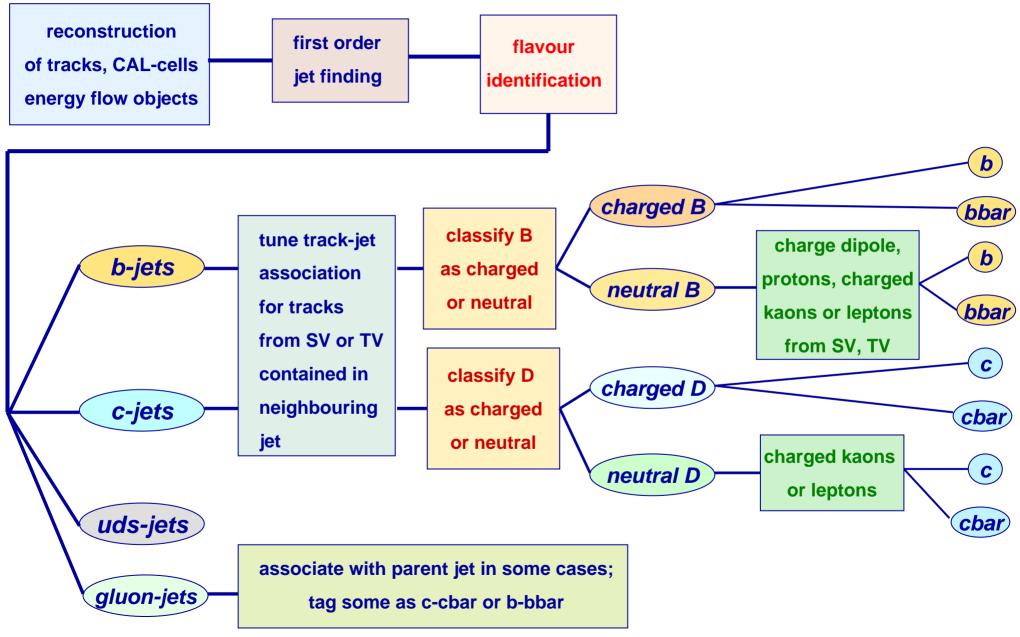
Standard detector characterised by:

> good angular coverage (cos θ = 0.96)

- proximity to IP, large lever arm:
 5 layers, radii from 15 mm to 60 mm
- > minimal layer thickness (0.064 % X0) to minimise multiple scattering

 \succ excellent point resolution (3.5 μ m)

Processes sensitive to vertex detector performance I

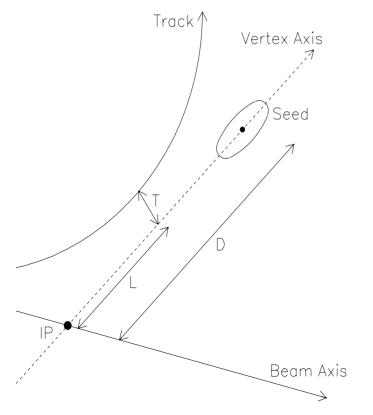

Excellent vertex detector performance, providing unprecedented flavour tagging and vertex charge reconstruction, will be crucial to maximise the physics reach of the ILC.

- > charm tagging: scalar top production with small Δm (stop-neutralino mass difference)
- > e+e- → qqbar: if standard model broken by absence of light Higgs, there may be resonances at large sqrt(s), which may be found by measurement of A^{LR}_{FB}, requiring quark sign selection;
 - NB: FB asymmetry relies on detector performance at ends of polar angle range, particularly sensitive to detector design (material amount, multiple scattering)

Processes sensitive to vertex detector performance II

- BSM: quark sign selection valuable for spin-parity analysis of SUSY particles; leptonic final states considered most, but: low branching fractions, A₁ << A_b
- > top quark polarisation:
 - top quark decays before spin can flip
 - \rightarrow polarisation at production reflected in decay;
 - general tool with numerous applications, e.g. measurement of underlying
 - SUSY parameters (E. Boos et al. hep-ph/0303110)

Typical event processing at the ILC

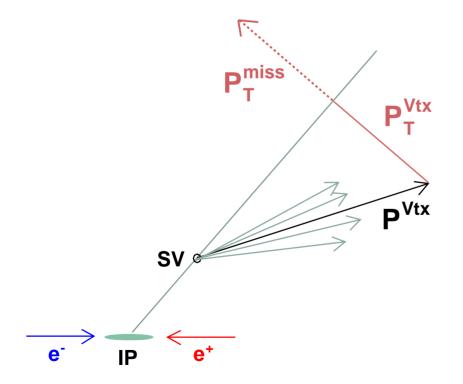

Sonja Hillert, University of Oxford

2005 International Linear Collider Workshop, Stanford, 20th March 2005

Vertex finding and track attachment

Vertex charge reconstruction studied $ie^+e^- \rightarrow \gamma Z \rightarrow b\overline{b}$ at $E_{CM} = 200 \text{ GeV}$, select two-jet events with jets back-to-back, contained in detector acceptance; need to find all stable B decay chain tracks - procedure:

 \succ run ZVTOP to find vertex candidates, require tracks to have d₀ < 1.0 cm



- Seed vertex (candidate furthest from IP) used to define the vertex axis
- \rightarrow reduce the number of degrees of freedom
- > assign tracks to B decay chain, which at point of closest approach to the vertex axis have
 - T < 1 mm: cleaning cut, only small effect
 - (L/D)_{min} < L/D < 2.5: main cut,
 - where (L/D)_{min} is optimised for the
 - detector configuration under study

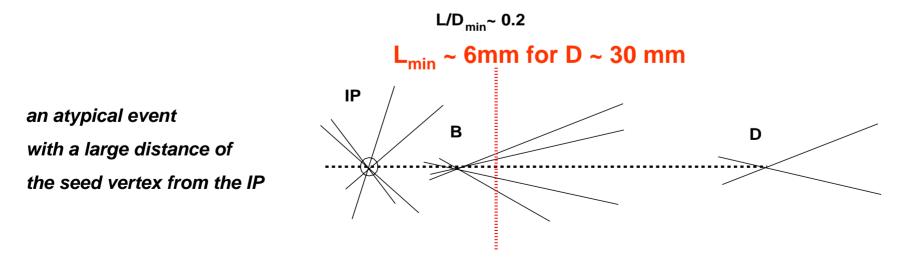
Vertex charge and Pt-corrected mass

vertex charge Q_{vtx} and M_{Pt} determined from tracks assigned to B decay chain:
 > sum of charges of these tracks: Q_{sum}

> reconstructed vertex charge $Q_{Vtx,r} = \begin{cases} +1 \text{ for } Q_{sum} = +1 \text{ or } +2 \\ -1 \text{ for } Q_{sum} = -1 \text{ or } -2 \end{cases}$

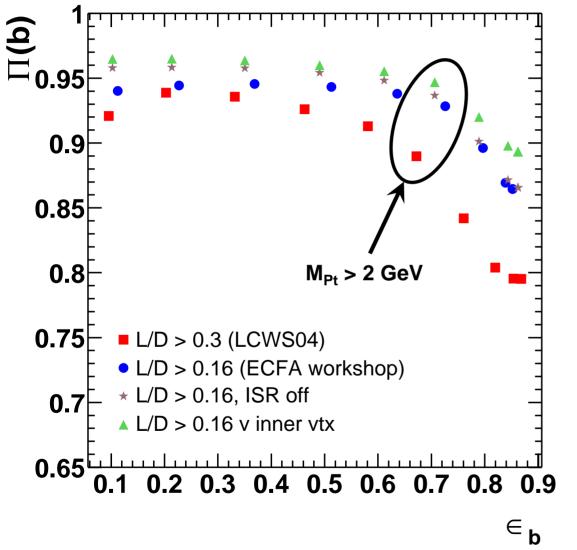
from sum of four-momenta: P_{vtx}, M_{vtx}
 apply kinematic correction (partly corrects for missing neutral particles):

$$\mathbf{M}_{\mathsf{Pt}} = \bigvee \mathbf{M}_{\mathsf{Vtx}}^2 + |\mathbf{P}_{\mathsf{T}}^{\mathsf{Vtx}}|^2 + |\mathbf{P}_{\mathsf{T}}^{\mathsf{Vtx}}|$$


M_{Pt} used as 'b tag' parameter

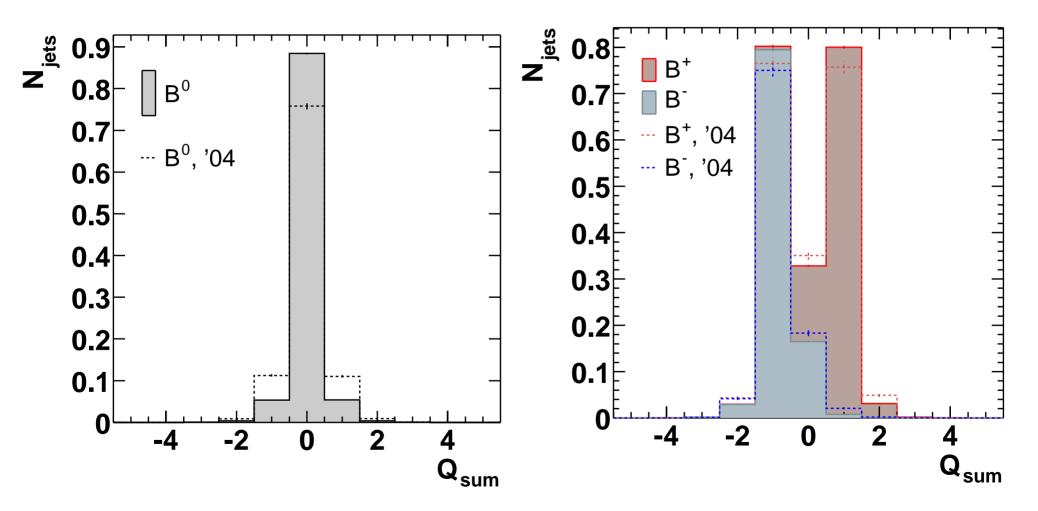
Changes since LCWS 2004

between LCWS04 and ECFA workshop (Durham) :

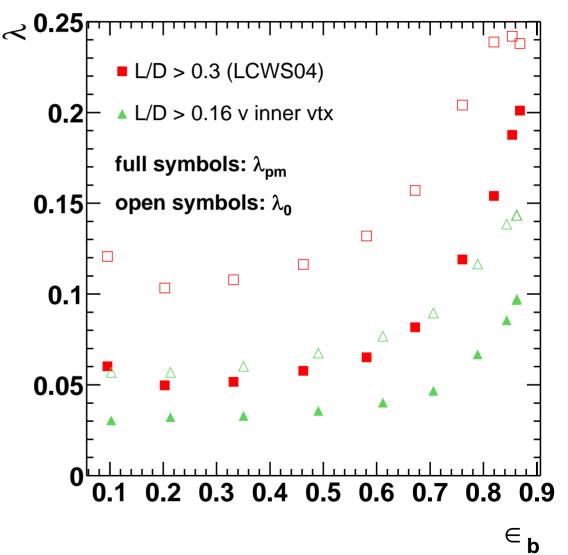

optimised cut on L/D, masked ${\rm K}_{\rm S}$ and Λ

- Is dropped ISR while studying vertex charge reconstruction for fixed jet energy (otherwise lose ~ 85% of generated events through back-to-back cut on jets)
- include information from inner vertices: seed vertex is ZVTOP vertex furthest from IP; assigning tracks contained in 'inner vertices' to B decay chain regardless of their L/D value improves vertex charge reconstruction (for large distances of seed vertex from IP, L/D cut is much larger than required to remove IP tracks)

Sonja Hillert, University of Oxford

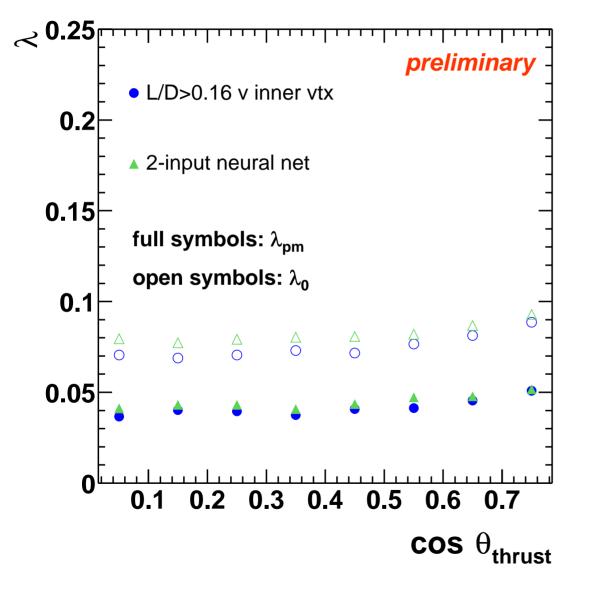

b-charge purity vs efficiency

- Iargest improvement from optimisation of L/D cut
- > switching off ISR mainly affects low efficiency region
- > further improvement at high efficiency (region of interest) from including inner vertex information (∆∏(b) = 1% at M_{Pt} > 2 GeV)


➤ total improvement since LCWS04: ΔΠ(b) = 5.7% at M_{Pt} > 2 GeV

Improvement of reconstructed vertex charge

Leakage rates – a new performance indicator


- > purity vs efficiency plots do not give the full picture:
 effect of wrongly reconstructed vertices on purity depends on their true charge:
 if neutral at MC level, ∏(b) decreases
 less than if charged, due to 50%
 chance that quark charge still correct
- ➢ define leakage rates: probability to obtain wrong Q_{vtx}; with N_{ab} = number of vertices generated with charge a, reconstructed with charge b, define $\lambda_0 = 1 - N_{00}/N_{0X}$ $\lambda_{pm} = 1 - (N_{11} + N_{-1-1}) / (N_{1X} + N_{-1X})$

Sonja Hillert, University of Oxford

2005 International Linear Collider Workshop, Stanford, 20th March 2005

Dependence of leakage rates on thrust angle

beginning to study polar angle dependence (very preliminary!)

plot: comparison of the two
 best methods for vertex charge
 reconstruction so far:
 L/D approach using inner vertex
 information, neural net (NN) with
 input variables (L/D, 3D Dnorm);

> λ_0 decreases by 2%, λ_{pm} by 1% towards the edge of $\cos \theta_{thrust}$ range

'L/D v inner vtx' approach better than the best-to-date neural net

Summary

> The ILC physics programme depends on excellent vertex detector performance.

- > improvement of vertex charge reconstruction:
 ∏(b) increased by 5.7% at M_{Pt} > 2 GeV from optimisation of L/D cut and including inner vertex information
- Ieakage rates (probability to obtain wrong vertex charge from reconstruction) complement the information contained in the quark charge purity
- First preliminary results on thrust angle dependence indicate 1% (2%) increase in leakage rate for charged (neutral) vertices towards edge of acceptance region

Future plans

- > plans for Q_{vtx} study: extend to range of jet energies, other quark flavours, improve NN
- > plans for simulation and physics studies in general:
 - extend current fast MC (SGV) to full MC simulation of effects in the vertex detector
 - improve 'high level reconstruction tools' (vertexing, flavour tagging, Q_{vtx} reconstruction)
 - move increasingly to study of benchmark processes sensitive to vertex detector design