Resonances and Electroweak Observables

at the ILC

Wolfgang Kilian (DESY)

LCWS 2005, Stanford March 2005

WK, P. Krstonošić, K. Mönig, J. Reuter, work in progress

New Physics and Weak Interactions

This session is about new physics at the TeV scale; in particular, new physics connected to EWSB.

We expect *direct* signals of new physics: new particles, new symmetries, extra dimensions, and more. However, any new physics that is visible at all will also have an *indirect effect* of the interactions of the known quarks, leptons, massless gauge bosons and massive vector bosons at lower energies.

This talk: look just at indirect effects,

and try to be generic.

(The most generic description is trivial: write down a Lagrangian with all possible interactions that are consistent with (QED and QCD) gauge invariance. We also may assume Lorentz and, for simplicity, CP invariance. All (but one) parameters in such a Lagrangian are observables, in principle. There are infinitely many. This is completely generic, and almost completely useless.)

A reasonable description should make use of the facts that we already know about weak interactions.

Back to the Roots

Any model of massive vector bosons can be written as a gauge theory, spontaneously broken. Here: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{QED}$. The Lagrangian (in general gauge) contains three scalars that are related to the longitudinal helicity component of the massive vector bosons.

We need:

$$\psi$$
(quarks and leptons), W^a_μ $(a = 1, 2, 3),$ B_μ , $\Sigma = \exp \frac{-i}{v} w^a \tau^a$

These are propagating fields and thus have kinetic energies:

$$\mathcal{L}_{\rm kin} = \sum_{\psi} \bar{\psi}(i\partial)\psi - \frac{1}{4g^2} W^a_{\mu\nu} W^{\mu\nu,a} - \frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} + \frac{v^2}{4} \operatorname{tr}\left\{ (\partial_{\mu} \Sigma) (\partial^{\mu} \Sigma) \right\}$$

Now, the dynamics: try *minimal coupling*, i.e., replace ordinary by covariant derivatives.

$$\mathcal{L}_{\min} = \sum_{\psi} \bar{\psi}(i \not\!\!\!D) \psi - \frac{1}{2g^2} \operatorname{tr} \left\{ \mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right\} - \frac{1}{2g^{\prime 2}} \operatorname{tr} \left\{ \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right\} + \frac{v^2}{4} \operatorname{tr} \left\{ (\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right\}$$

This model contains only three parameters: g, g', and the scale v.

Electroweak Parameters

The complete Lagrangian has infinitely many parameters:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\min} - \sum_{\psi_R, \psi_L} \bar{\psi}_R \Sigma M \psi_L + \beta_1 \mathcal{L}'_0 + \sum_i \alpha_i \mathcal{L}_i + \frac{1}{v} \sum_i \alpha_i^{(5)} \mathcal{L}_i^{(5)} + \frac{1}{v^2} \sum_i \alpha_i^{(6)} \mathcal{L}_i^{(6)} + \dots$$

With $\mathbf{V} = \Sigma(\mathbf{D}\Sigma)^{\dagger}$ (longitudinal vector boson), and $\mathbf{T} = \Sigma\tau^{3}\Sigma^{\dagger}$ (projects out neutral component): $\mathcal{L}'_{0} = \frac{v^{2}}{4} \operatorname{tr} \{\mathbf{T}\mathbf{V}_{\mu}\} \operatorname{tr} \{\mathbf{T}\mathbf{V}_{\nu}\}$ $\mathcal{L}_{1} = \operatorname{tr} \{\mathbf{B}_{\mu\nu}\mathbf{W}^{\mu\nu}\}$ $\mathcal{L}_{2} = \operatorname{i}\operatorname{tr} \{\mathbf{B}_{\mu\nu}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}]\}$ $\mathcal{L}_{3} = \operatorname{i}\operatorname{tr} \{\mathbf{W}_{\mu\nu}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}]\}$ $\mathcal{L}_{4} = (\operatorname{tr} \{\mathbf{V}_{\mu}\mathbf{V}_{\nu}\})^{2}$ $\mathcal{L}_{5} = (\operatorname{tr} \{\mathbf{V}_{\mu}\mathbf{V}^{\mu}\})^{2}$ $\mathcal{L}_{6} = \operatorname{tr} \{\mathbf{V}_{\mu}\mathbf{V}_{\nu}\} \operatorname{tr} \{\mathbf{T}\mathbf{V}^{\mu}\} \operatorname{tr} \{\mathbf{T}\mathbf{V}^{\nu}\}$ $\mathcal{L}_{7} = \operatorname{tr} \{\mathbf{V}_{\mu}\mathbf{V}^{\mu}\} (\operatorname{tr} \{\mathbf{T}\mathbf{V}_{\nu}\})^{2}$ $\mathcal{L}_{8} = \frac{1}{4} (\operatorname{tr} \{\mathbf{T}\mathbf{W}_{\mu\nu}\})^{2}$ $\mathcal{L}_{9} = \frac{i}{2} \operatorname{tr} \{\mathbf{T}\mathbf{W}_{\mu\nu}\} \operatorname{tr} \{\mathbf{T}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}]\}$ $\mathcal{L}_{10} = \frac{1}{2} (\operatorname{tr} \{\mathbf{T}\mathbf{V}_{\mu}\})^{2} (\operatorname{tr} \{\mathbf{T}\mathbf{V}_{\nu}\})^{2}$

To explain all electroweak precision data, we need the matrix M (flavor physics), but apparently the remaining parameters are small, no larger than required for the renormalization of radiative corrections with cutoff $\Lambda \sim 4\pi v$.

Therefore, the gauge-covariant approach makes sense for a phenomenological description.

All indirect information on new physics is encoded in the values of β_1 , α_i ,

The α_i parameters can be measured at the ILC. (See, e.g., Predrag's and Jadranka's talks.)

What do we expect?

- The α_i parameters should be $\ll 1$. For many of them, this has been established by LEP.
- The α_i parameters should be $\gtrsim 1/16\pi^2 = 0.006$. This is required by consistency since many of them renormalize divergences.

(In plots, we often show $16\pi^2 \alpha_i$ instead of α_i . These numbers are expected $\gtrsim 1$.)

Traditionally, to get a feeling of experimental sensitivity,

one translates α values into a new-physics scale Λ , according to

$$\alpha_i = v^2 / \Lambda^2 \qquad \Rightarrow \qquad \Lambda = v / \sqrt{\alpha_i}$$

However, this is misleading since the operator normalization is arbitrary. Even worse: we will see that, in many cases, the power-counting is also misleading. More meaningful: investigate concrete new-physics contributions to the α_i . Therefore, we look at resonances that couple to the EWSB sector,

The new-physics reach is characterized by the resonance mass that gives a detectable α_i shift.

Narrow resonances = particles. Wide resonances = continuum.

Symmetry: Because $\beta_1 \ll 1$, vector boson scattering exhibits a *custodial* $SU(2)_c$ symmetry (weak isospin). This symmetry is broken by the hypercharge coupling $(g' \neq 0)$ and by fermion masses, but may be used as a guideline.

We catalog the possible resonance multiplets by spin and isospin, but allow for isospin violation.

$$J = 0 \qquad J = 1 \qquad J = 2$$

$$I = 0 \qquad \sigma^{0} \text{ (Higgs?)} \qquad \omega^{0} (Z'?) \qquad f^{0} \text{ (Graviton?)}$$

$$I = 1 \qquad \pi^{\pm}, \pi^{0} \text{ (2HDM?)} \qquad \rho^{\pm}, \rho^{0} (W'/Z'?) \qquad a^{\pm}, a^{0}$$

$$I = 2 \qquad \phi^{\pm\pm}, \phi^{\pm}, \phi^{0} \text{ (Higgs triplet?)} \qquad \cdots \qquad t^{\pm\pm}, t^{\pm}, t^{0}$$

This accounts for both weakly and strongly-interacting models.

Integrating Out

Let's look at the tree-level effects of resonances on electroweak interactions.

Recipe: For each resonance Φ , write a generic Lagrangian

$$\mathcal{L}_{\Phi} = z \left[\Phi (M^2 + DD) \Phi + 2\Phi J \right] \qquad \Rightarrow \qquad \mathcal{L}_{\Phi}^{\text{eff}} = -\frac{z}{M^2} J J + \frac{z}{M^4} J (DD) J + O(M^{-6})$$

Example: Scalar singlet

$$\mathcal{L}_{\sigma} = -\frac{1}{2} \left[\sigma \left(M_{\sigma}^{2} + \partial^{2} \right) \sigma - g_{\sigma} v \sigma \operatorname{tr} \left\{ \mathbf{V}_{\mu} \mathbf{V}^{\mu} \right\} - h_{\sigma} v \sigma \left(\operatorname{tr} \left\{ \mathbf{T} \mathbf{V}_{\mu} \right\} \right)^{2} \right]$$

Effective Lagrangian:

$$\mathcal{L}_{\sigma}^{\text{eff}} = \frac{v^2}{8M_{\sigma}^2} \left[g_{\sigma} \operatorname{tr} \left\{ \mathbf{V}_{\mu} \mathbf{V}^{\mu} \right\} + h_{\sigma} \left(\operatorname{tr} \left\{ \mathbf{T} \mathbf{V}_{\mu} \right\} \right)^2 \right]^2 + O(M_{\sigma}^{-4})$$

Result: Anomalous quartic gauge couplings

$$\boldsymbol{\alpha_5} = g_{\sigma}^2 \left(\frac{v^2}{8M_{\sigma}^2}\right) \qquad \boldsymbol{\alpha_7} = 2g_{\sigma}h_{\sigma} \left(\frac{v^2}{8M_{\sigma}^2}\right) \qquad \boldsymbol{\alpha_{10}} = 2h_{\sigma}^2 \left(\frac{v^2}{8M_{\sigma}^2}\right)$$

Special case: SM Higgs with $g_{\sigma} = 1$ and $h_{\sigma} = 0$

Coupling Strength and Anomalous Coupling

All indirect effects are proportional to $(\text{coupling})^2$. How large can that be? Scalar resonance width $(M \gg M_W, M_Z)$:

$$\Gamma_{\sigma} = \frac{g_{\sigma}^2 + \frac{1}{2}(g_{\sigma} + 2h_{\sigma})^2}{16\pi} \left(\frac{M_{\sigma}^3}{v^2}\right) + \Gamma(\text{non-}WW, ZZ)$$

If this is to make sense, we should require $\Gamma \leq M$. The largest allowed coupling of the resonance to the EWSB sector corresponds to $\Gamma = M$ (broad continuum) and $\Gamma(\text{non-}WW, ZZ) = 0$.

Simplified: Assume isospin $(h_{\sigma} = 0)$:

$$g_{\sigma}^2 \le \frac{32\pi}{3} \left(\frac{v^2}{M_{\sigma}^2}\right) \left(\frac{\Gamma_{\sigma}}{M_{\sigma}}\right) \le \frac{32\pi}{3} \left(\frac{v^2}{M_{\sigma}^2}\right)$$

Apply this bound to the effective Lagrangian:

$$\alpha_5 \le \frac{4\pi}{3} \left(\frac{v^4}{M_\sigma^4}\right)$$

Insert numbers:

$$M_{\sigma} = 1 \text{ TeV} \quad \Rightarrow \quad 16\pi^2 \alpha_5 \le 2.4 \qquad \qquad M_{\sigma} = 1.5 \text{ TeV} \quad \Rightarrow \quad 16\pi^2 \alpha_5 \le 0.5$$

Scalars, Vectors, and Tensors

So, the sensitivity decreases like $1/M^4$. Is this generic?

- Scalar: $\Gamma \sim g^2 M^3$ and $\alpha \sim g^2/M^2 \Rightarrow \alpha_{\rm sat} \sim 1/M^4$
- Vector: $\Gamma \sim g^2 M$ and $\alpha \sim g^2/M^2 \Rightarrow \alpha_{sat} \sim 1/M^2$?
- Tensor: like scalar

Let's look more closely at a vector resonance (isospin triplet, simplified):

$$\mathcal{L}_{\rho} = -\frac{1}{8} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu\nu} \boldsymbol{\rho}^{\mu\nu} \right\} + \frac{M_{\rho}^2}{4} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \boldsymbol{\rho}^{\mu} \right\} + \mathrm{i} \frac{g_{\rho} v^2}{2} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \mathbf{V}^{\mu} \right\}$$

The leading term $(1/M^2)$:

$$\mathcal{L}_{\rho}^{\text{eff}} = \frac{g_{\rho}^2 v^4}{4M_{\rho}^2} \operatorname{tr} \left\{ (\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right\} + O(M_{\rho}^{-4})$$

... but this term just renormalizes the kinetic energy (i.e., v) and is thus unobservable.

 \Rightarrow The observable effect decreases like $1/M^4$.

Vector Resonances

The full Lagrangian (vector triplet resonance, fermions omitted):

$$\begin{split} \mathcal{L}_{\rho} &= -\frac{1}{8} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu\nu} \boldsymbol{\rho}^{\mu\nu} \right\} + \frac{M_{\rho}^{2}}{4} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \boldsymbol{\rho}^{\mu} \right\} + \frac{\Delta M_{\rho}^{2}}{8} \left(\operatorname{tr} \left\{ \mathbf{T} \boldsymbol{\rho}_{\mu} \right\} \right)^{2} \\ &+ \frac{\mu_{\rho}}{4} g \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \mathbf{W}^{\mu\nu} \boldsymbol{\rho}_{\nu} \right\} + \frac{\mu_{\rho}'}{4} g' \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \mathbf{B}^{\mu\nu} \boldsymbol{\rho}_{\nu} \right\} \\ &+ \operatorname{i} \frac{g_{\rho} v^{2}}{2} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \mathbf{V}^{\mu} \right\} + \operatorname{i} \frac{h_{\rho} v^{2}}{2} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu} \mathbf{T} \right\} \operatorname{tr} \left\{ \mathbf{T} \mathbf{V}^{\mu} \right\} \\ &+ \operatorname{i} \frac{\ell_{\rho}}{2M_{\rho}^{2}} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu\nu} \mathbf{W}^{\nu} \boldsymbol{\rho} \mathbf{W}^{\rho\mu} \right\} + \operatorname{i} \frac{\ell_{\rho}'}{2M_{\rho}^{2}} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu\nu} \mathbf{B}^{\nu} \boldsymbol{\rho} \mathbf{W}^{\rho\mu} \right\} + \operatorname{i} \frac{\ell_{\rho}''}{2M_{\rho}^{2}} \operatorname{tr} \left\{ \boldsymbol{\rho}_{\mu\nu} \mathbf{T} \right\} \operatorname{tr} \left\{ \mathbf{T} \mathbf{W}^{\nu} \boldsymbol{\rho} \mathbf{W}^{\rho\mu} \right\} \\ &+ \cdots \end{split}$$

Effective Lagrangian:

- All α_i parameters $\sim 1/M_{
 ho}^4$
- except for β_1 (i.e., $\Delta \rho$ or T parameter): contribution $\sim h_{
 ho}/M_{
 ho}^2$
- \Rightarrow Limit on T parameter constrains h_{ρ} .

More on Vector Resonances

But there are fermions: couple ρ to fermion current(s) j_{μ}

- \Rightarrow 4-fermion contact interaction(s) $j_{\mu}j^{\mu}$ proportional to $1/M_{\rho}^2$ (effective T and U parameters)
- \Rightarrow Vector coupling $j_{\mu}V^{\mu}$ proportional to $1/M_{
 ho}^2$
 - $\rightarrow\,$ Effective S parameter
 - ightarrow Mismatch between measured fermionic and bosonic gauge coupling g

Effect on triple gauge vertices:

- Order $1/M^2$: Renormalization of ZWW coupling (present simultaneously with 4-fermion contact interaction)
- Order $1/M^4$:
 - Shifts in Δg_1^Z , $\Delta \kappa^\gamma$, $\Delta \kappa^Z$ depend on couplings and magnetic moments
 - Isospin conservation implies $\Delta \kappa^{\gamma} + \frac{c_{\rm w}^2}{s_{\rm w}^2} (\Delta \kappa^Z \Delta g_1^Z) = 0$
 - Shifts in λ^{γ} and λ^{Z} , generically $\lambda^{\gamma} \neq \lambda^{Z}$ even if isospin is conserved

Effect on quartic gauge vertices:

• Order $1/M^4$, orthogonal to scalar (in $\alpha_4 - \alpha_5$ space)

Conclusions (preliminary)

Model-independent description of new-physics effects in electroweak data: measure all electroweak parameters (anomalous couplings) at the ILC.

For a model-independent estimate of the ILC reach, translate this into the achievable limits on resonances. Consider all reasonable quantum numbers and all independent couplings.

First results: don't expect too much ...

- \Rightarrow 4-fermion contact interactions are most sensitive $(1/M^2)$
- \Rightarrow Leading bosonic terms generically suppressed by $1/M^4$ (for maximal coupling)

If we reach the necessary sensitivity, there are many things that complement LHC data:

- \Rightarrow Triple gauge couplings sensitive to vector resonances, nontrivial effects (magnetic moments)
- \Rightarrow Quartic gauge couplings sensitive to all types of resonances
- \Rightarrow GigaZ data (improved S, T, U) would greatly increase overall significance

(t.b.c.)