Luminosity Measurement

Tel Aviv University HEP Experimental Group

LCWS2005

Ronen Ingbir

Luminosity Measurement

Aviv Universitv

It is not only important to have a high luminosity machine, but it is as important to measure the luminosity with a high precision. $n_{1,4}$

Event rate: $R = L\sigma_{int}$ Luminosity: $L = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$

Measurement approach : taking a known process – Bhabha scattering.

 $\sigma_{\scriptscriptstyle Bhabha}$

Electrons/Bhabhas

Electrons/Positrons - Geant-3 integrated generator.

Bhabha scattering - BHWIDE generator.

Beamstrahlung and Beam Spread

Beamstrahlung-Circe generator. Beam spread-Included separately.

Reconstruction Algorithm

Logarithmic Constant

After selecting:

$$W_i = \max\{0, [const + \ln(\frac{E_i}{E_T})]\}$$

We explored a more systematic approach.

The first step is finding the best constant to use under two criteria:

recision design

- 1. Best resolution.
- 2. Minimum bias.

Energy Dependent Constant

Geometric Acceptance

Energy Resolution

Bias Study

Real Life Algorithm

Working with both sides of the detector and looking at the difference between the reconstructed properties:

$$\sigma_{new} = \sqrt{2}\sigma$$

(In real life we don't have generated properties)

LCWS 2005

Maximum Peak Shower Design

Our basic detector is designed with

30 rings * **24** sectors * **15** cylinders = 10,800 channels

Do we use these channels in the most effective way ?

24 sectors * **15** rings * (10 cylinders + 20 cylinders) = 10,800 channels

Tel Aviv University

Polar Reconstruction

Electronics Simulation

Fast Detector Simulation

Motivation :

High statistics is required to notice precision of : $\frac{\Delta L}{L} \cong 10^{-4}$ (Which is the precision goal of the ILC)

There is an analytic calculation (and approximation): $\frac{\Delta L}{L} \approx \frac{2^* \Delta \theta}{\theta}$

Is it a good approximation ? This calculation takes into account only the Bhabha angular distribution, how does other factors affect (backgrounds, detector design, electronics noise) ?

We need a mechanism to actually count events, as if it was real life.

High Statistics MC

FCAL Collaboration

Luminosity R&D Status

Tel Aviv University

Electronics noise and 'Dead' Cells

ollaboration

h precision design

$$\Delta N / (\sigma(\theta), \Delta \theta, E, \sigma(E)) \longrightarrow$$

High statistics MC

Luminosity Future Steps

Additional hardware design constrains and electronics simulation (digitisation, reality noise parameters, silicon production constrains)

Additional background studies (two photon events, beamstrahlung hitting the detector)

Luminosity with polarised beams (Gideon Alexander)

Luminosity with a crossing angle

Sensors design & tests

Electronics design

Prototype

Cel Aviv University

