Indirect Sensitivities to the Scale of Supersymmetry

Georg Weiglein

IPPP Durham

Stanford, 03/2005

Based on collaboration with J. Ellis, S. Heinemeyer, K. Olive, hep-ph/0411216

- 1. Introduction
- 2. Electroweak precision observables
- 3. Combined sensitivity: present situation and ILC precision
- 4. Conclusions

1. Introduction

EW precision data: $M_{\rm Z}, M_{\rm W}, \sin^2 \theta_{\rm eff}^{\rm lept}, \dots$ Theory: SM, MSSM, ...

Test of theory at quantum level: sensitivity to loop corrections

Indirect constraints on unknown parameters: $M_{\rm H}$, $m_{\rm \tilde{t}}$, . . .

Effects of "new physics"?

Sensitivity to quantum effects (loop corrections) of SUSY:

• Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$

Sensitivity to quantum effects (loop corrections) of SUSY:

• Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$

■ Loop-induced processes \Leftrightarrow new physics contribution doesn't compete with large SM lowest-order prediction: $(g-2)_{\mu}, b \rightarrow s\gamma, B_{s} \rightarrow \mu^{+}\mu^{-}, EDMs, ...$

Sensitivity to quantum effects (loop corrections) of SUSY:

• Precision measurements resolve %-level loop effects: $M_{\rm W}, \sin^2 \theta_{\rm eff}, \Gamma_{\rm Z}, \ldots$

▲ Loop-induced processes ⇔ new physics contribution doesn't compete with large SM lowest-order prediction: $(g-2)_{\mu}, b → s\gamma, B_{s} → \mu^{+}\mu^{-}, EDMs, ...$

Future precision measurements, possibly very large loop effects: M_h, other Higgs-sector observables

CMSSM characterised by five parameters:

 $m_{1/2}, m_0, A_0$ (GUT scale), $\tan \beta$, sgn(μ) (weak scale)

⇒ Low-energy spectrum from renormalisation group running lightest SUSY particle: $\tilde{\chi}_1^0$

Cold dark matter (CDM) density (WMAP, ...):

 $0.094 < \Omega_{\rm CDM} h^2 < 0.129$

 \Rightarrow Constraints on SUSY parameter space

Allowed region in $(m_{1/2}, m_0)$ plane (fixed A_0 , different m_t):

Allowed region in $(m_{1/2}, m_0)$ plane (fixed A_0 , different m_t):

⇒ narrow "WMAP strips"

⇒ effectively reduces dimensionality of parameter space

Allowed region in $(m_{1/2}, m_0)$ plane (fixed A_0 , different m_t):

- ⇒ narrow "WMAP strips"
- ⇒ effectively reduces dimensionality of parameter space
- ⇒ analyse CMSSM along WMAP strips

2. Electroweak precision observables

Observables taken into account:

Present:

 $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, $b \to s\gamma$, $B_{\rm s} \to \mu^+ \mu^-$

Current experimental errors + estimate of current theoretical uncertainties (from unknown higher-orders + experimental errors of input parameters)

2. Electroweak precision observables

Observables taken into account:

Present:

$$M_{\rm W}$$
, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, $b \to s\gamma$, $B_{\rm s} \to \mu^+ \mu^-$

Current experimental errors + estimate of current theoretical uncertainties (from unknown higher-orders + experimental errors of input parameters)

Future (ILC):

$$M_{\rm W}, \sin^2 \theta_{\rm eff}, (g-2)_{\mu}, b \to s\gamma, B_{\rm s} \to \mu^+ \mu^-, M_{\rm h}, \mathsf{BR}(h \to b\bar{b})/\mathsf{BR}(h \to WW^*)$$

Experimental precision at the ILC + estimate of future theoretical uncertainties

Theoretical predictions for $M_{ m W}$, $\sin^2 heta_{ m eff}$:

Comparison of prediction for muon decay with experiment (Fermi constant G_{μ})

 \Rightarrow Theo. prediction for $M_{\rm W}$ in terms of $M_{\rm Z}$, α , G_{μ} , $\Delta r(m_{\rm t}, m_{\tilde{\rm t}}, \ldots)$

Effective couplings at the Z resonance:

$$\Rightarrow \quad \sin^2 \theta_{\text{eff}} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V}{g_A} \right) = \left(1 - \frac{M_W^2}{M_Z^2} \right) \operatorname{Re} \kappa_l (s = M_Z^2)$$

CMSSM prediction for M_W vs. current precision and ILC (MegaW)

 \Rightarrow Relatively small values of $m_{1/2}$ favoured great improvement at the ILC

CMSSM prediction for $\sin^2 \theta_{eff}$ vs. current precision and ILC (GigaZ)

 \Rightarrow Relatively small values of $m_{1/2}$ favoured great improvement at the ILC

The anomalous magnetic moment of the muon:

$$(g-2)_{\mu} \equiv 2a_{\mu}$$

Experimental result for a_{μ} vs. SM prediction:

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{theo}} = (25.2 \pm 9.2) \times 10^{-10} : 2.7 \sigma$$
.

Better agreement between theory and experiment possible in models of physics beyond the SM

Example: one-loop contributions of superpartners of fermions and gauge bosons

Indirect Sensitivities to the Scale of Supersymmetry, Georg Weiglein, Stanford 03/2005 - p.10

SUSY contributions to a_{μ}

One-loop SUSY contribution (dashed),

two-loop chargino/neutralino contributions (dash-dotted)

and the sum (full line)

for $\mu = M_2 = M_A \equiv M_{SUSY}$, $m_{\tilde{f}} = 1$ TeV, $\tan \beta = 50$: [S. Heinemeyer, D. Stöckinger, G. W. '04]

CMSSM prediction for Δa_{μ} vs. current precision (1 σ and 2 σ bands)

 \Rightarrow For tan $\beta = 10$: relatively small values of $m_{1/2}$ favoured

Higgs mass prediction in the MSSM:

Prediction for $M_{\rm h}$, $M_{\rm H}$, ...

Tree-level result for $M_{\rm h}$, $M_{\rm H}$:

$$m_{\rm H,h}^2 = \frac{1}{2} \left[M_{\rm A}^2 + M_{\rm Z}^2 \pm \sqrt{(M_{\rm A}^2 + M_{\rm Z}^2)^2 - 4M_{\rm Z}^2 M_{\rm A}^2 \cos^2 2\beta} \right]$$

$\Rightarrow M_{\rm h} \leq M_{\rm Z}$ at tree level

MSSM tree-level bound (gauge sector): excluded by LEP!

Large radiative corrections (Yukawa sector, ...):

Yukawa couplings: $\frac{e m_t}{2M_W s_W}$, $\frac{e m_t^2}{M_W s_W}$, ...

 \Rightarrow Dominant one-loop corrections: $G_{\mu}m_{\rm t}^4 \ln\left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_{\rm t}^2}\right)$, $\mathcal{O}(100\%)$!

CMSSM prediction for $M_{\rm h}$ vs. assumed experimental value

for current and different future theoretical uncertainties

⇒ High sensitivity to variations of $m_{1/2}$, A_0 ⇒ constraints on SUSY parameter space

3. Combined sensitivity: present situation and ILC precision

Combined sensitivity investigated for present situation + ILC precision

Two kinds of fits:

- χ^2 fit for fixed A_0
- χ^2 fit in $(m_{1/2}, A_0)$ plane (scan of CMSSM parameter space)

χ^2 fit in CMSSM with dark matter constraints: $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${ m BR}(b \to s\gamma)$, present situation

 $\tan\beta = 10$:

⇒ very good description of the data

preference for relatively small mass values

χ^2 fit in CMSSM with dark matter constraints: $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${ m BR}(b \to s\gamma)$, present situation

 $\tan\beta = 50$:

 \Rightarrow worse fit quality

preferred $m_{1/2}$ values larger by 200–300 GeV compared to $\tan \beta = 10$ case χ^2 fit in CMSSM with dark matter constraints: $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${
m BR}(b \to s\gamma)$, present situation

68% and 90% C.L. regions in $m_{1/2}$ – A_0 plane:

 $\tan \beta = 10:$ $\tan \beta = 50:$

Indirect Sensitivities to the Scale of Supersymmetry, Georg Weiglein, Stanford 03/2005 - p.18

Fit results for particle masses, $\tan \beta = 10$:

 $m_{ ilde{\chi}_1^+} pprox m_{ ilde{\chi}_2^0}$, $m_{ ilde{ au}_1}$, present situation

\Rightarrow Good prospects for the LHC and ILC

 χ^2 fit in CMSSM with CDM constraints: M_W , $\sin^2 \theta_{\text{eff}}$, $(g-2)_{\mu}$, BR $(b \to s\gamma)$, M_h , BR $(h \to b\bar{b})/\text{BR}(h \to WW^*)$, ILC precison

⇒ Great increase in sensitivity
 ⇒ tight constraints on particle masses

 χ^2 fit in CMSSM with CDM constraints: M_W , $\sin^2 \theta_{\text{eff}}$, $(g-2)_{\mu}$, BR $(b \to s\gamma)$, M_h , BR $(h \to b\bar{b})/\text{BR}(h \to WW^*)$, ILC precison

 \Rightarrow ILC precision greatly improves sensitivity to $m_{1/2}$, A_0 high indirect sensitivity up to $m_{1/2} \lesssim 1$ TeV

CMSSM with dark matter constraints:

CMSSM with dark matter constraints:

Present situation:

Very good description of the data Preference for relatively small SUSY masses Good prospects for LHC and ILC

CMSSM with dark matter constraints:

Present situation:

Very good description of the data Preference for relatively small SUSY masses Good prospects for LHC and ILC Best fit point \approx SPS 1a

CMSSM with dark matter constraints:

Present situation:

Very good description of the data Preference for relatively small SUSY masses Good prospects for LHC and ILC Best fit point \approx SPS 1a

ILC precision:

Drastic improvement in sensitivity to $m_{1/2}$, A_0

high indirect sensitivity up to $m_{1/2} \lesssim 1 \text{ TeV}$

CMSSM with dark matter constraints:

Present situation:

Very good description of the data Preference for relatively small SUSY masses Good prospects for LHC and ILC Best fit point \approx SPS 1a

ILC precision:

Drastic improvement in sensitivity to $m_{1/2}$, A_0

high indirect sensitivity up to $m_{1/2} \lesssim 1 \text{ TeV}$

 $\begin{array}{l} \mbox{Comparison with direct experimental information} \Rightarrow test of \\ \mbox{CMSSM at the loop level} \\ \end{array} \label{eq:cmssmetry} \mbox{Minimized on the scale of Supersymmetry, Georg Weiglein, Stanford 03/2005 - p.22} \end{array}$