Crazy SUSY Scenarios That Just Might Be True

Howie Baer Florida State University Outline

- \star mSUGRA model and associated myths
- ★ NUHM1 model
- ★ NUHM2 model
- ★ IMH model and Yukawa unification
- ★ NMH model

Some standard results from mSUGRA/CMSSM model

• Well known parameter space: $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu), (m_t)$

H. Baer, "SLAC ILC2005 meeting"

Several myths pertaining to neutralino dark matter

- The HB/FP (focus point) region occurs at $m_0 \sim \text{TeV}$
- The A-annihilation funnel occurs at large $\tan \beta$
- The "bulk" region is excluded
- Squarks are too heavy to be seen at the ILC
- The lightest slepton is right-handed

Simplest extension of parameter space: NUHM1 model

- Non-universal Higgs mass: 1 parameter extension
- $m_{\phi} = sign(m_{H_u}^2) \cdot \sqrt{|m_{H_u}^2|} = sign(m_{H_d}^2) \cdot \sqrt{|m_{H_d}^2|} \neq m_0$
- Motivated by SO(10) SUSY GUTS since $\hat{H}_u, \hat{H}_d \in \hat{\phi}(10)$; matter superfields $\in \hat{\psi}(16)$
- m_{ϕ} can be > 0 or < 0: (recall $m_{H_u}^2$ driven "-" in RG running to yield REWSB
- GUT stability constraint: $m_{H_{u,d}}^2 + \mu^2 > 0$ at $Q = M_{GUT}$ (?)
- HB, Belyaev, Mustafayev, Profumo and Tata

NUHM1 model:

--- $m_0 = 1000 \text{GeV}, m_{1/2} = 200 \text{GeV}, \tan\beta = 20, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$ --- $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan\beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

H. Baer, "SLAC ILC2005 meeting"

Higgs soft mass running in NUHM1 case:

•
$$\frac{dm_{H_u}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5}g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10}g_1^2 S + 3f_t^2 X_t \right)$$

• $\frac{dm_{H_d}^2}{dt} = \frac{2}{16\pi^2} \left(-\frac{3}{5}g_1^2 M_1^2 - 3g_2^2 M_2^2 - \frac{3}{10}g_1^2 S + 3f_b^2 X_b + f_\tau^2 X_\tau \right)$

•
$$X_t = m_{Q_3}^2 + m_{\tilde{t}_R}^2 + m_{H_u}^2 + A_t^2$$

\star Tree-level minimization condition

•
$$\mu^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta}{(\tan^2 \beta - 1)} - \frac{M_Z^2}{2}$$

• at moderate to large $\tan\beta$: $\mu^2 \sim -m_{H_u}^2$

•
$$m_A^2 = m_{H_u}^2 + m_{H_d}^2 + 2\mu^2 \simeq m_{H_d}^2 - m_{H_u}^2$$

Running of $m_{H_u}^2$ and $m_{H_d}^2$

 m_0 =300GeV, $m_{1/2}$ =300GeV, $tan\beta$ =10, A_0 =0, μ >0, m_t =178GeV

H. Baer, "SLAC ILC2005 meeting"

χ^2 evaluation of NUHM1 model for various m_{ϕ}

H. Baer, "SLAC ILC2005 meeting"

χ^2 evaluation of NUHM1 model for $\tan \beta = 35$, $m_{\phi} = -2.5m_0$

NUHM1: $tan\beta=35$, $m_{\phi}=-2.5m_{o}$, $\mu > 0$, $A_{o}=0$, $m_{t}=178$ GeV

H. Baer, "SLAC ILC2005 meeting"

Collider reach for NUHM1 model

2005/03/04 16.06

NUHM2 model:

- $m_0, m_{H_u}^2, m_{H_d}^2, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- REWSB: $m_{H_u}^2, m_{H_d}^2 \leftrightarrow \mu, m_A$
- Can always dial parameters so that in A-funnel or higgsino region
- See also Berezinsky et al.; Arnowitt and Nath; Ellis, Olive, Falk, Santoso
- $S = m_{H_u}^2 m_{H_d}^2 + Tr[\mathbf{m}_Q^2 \mathbf{m}_L^2 2\mathbf{m}_U^2 + \mathbf{m}_D^2 + \mathbf{m}_E^2] = 0$ in mSUGRA and NUHM1 case; $\neq 0$ for NUHM2 model
- $\bullet\,$ For large scalar masses, $S\,$ can dominate RG running

Sparticle masses in NUHM2 model with HS: $m_0 = m_{1/2} = 300$ Ge

Sparticle masses in NUHM2 model with HS: $m_0 = 1450$ GeV, m_1

SPS2: *m*₀=1450GeV, *m*_{1/2}=300GeV, *tan*β=10, *A*₀=0, μ>0, *m*_t=178GeV

H. Baer, "SLAC ILC2005 meeting"

NUHM2 parameter space for $m_0 = m_{1/2} = 300$ GeV

NUHM2 parameter space for $m_0 = m_{1/2} = 300$ GeV

Reach of colliders in NUHM2 model

H. Baer, "SLAC ILC2005 meeting"

NUHM2: Yukawa coupling unification

- Yukawa coupling unification (YCU) for $t b \tau$ predicted in simplest SO(10) SUSY GUTs
- Depends sensitively on t, b, τ self energy graphs, which depend on entire SUSY spectrum
- Good YCU over much of p-space for $\mu < 0$: D-term model (HB, Diaz, Ferrandis, Tata)
- Good YCU for $\mu > 0$ in NUHM2 model but only if $A_0^2 = 2m_{10}^2 = 4m_0^2$ with split Higgs! (Auto, HB, Balazs, Belyaev, Ferrandis, Tata) (Blazek, Dermisek, Raby)
- Boundary conditions originally found by Bagger, Feng, Polonsky, Zhang for radiatively driven Inverted Scalar Mass Hierarchy model

Yukawa unification in NUHM2 model

H. Baer, "SLAC ILC2005 meeting"

Yukawa unification in NUHM2 model

H. Baer, "SLAC ILC2005 meeting"

Reconcile YCU with relic density

- Large m_0 values in YCU HS model suppress neutralino annihilation: large relic density is typical
- Dermisek, Raby, Roszkowski, Ruiz de Austri maintain good YCU for low μ, m_A solutions
- Auto, HB, Balazs, Belyaev, Ferrandis, Tata: low $\mu,\ m_A$ solutions \rightarrow lessen unification
- Auto HB, Belyaev, Krupovnickas solution of relic density: light $m_{\tilde{u}_R}$, $m_{\tilde{c}_R}$ reduces relic density while preserving Yukawa unification

Normal Scalar Mass Hierarchy Case

- In mSUGRA model, WMAP relic density selects preferred regions of parameter space
- Measured $BF(b \rightarrow s\gamma)$ close to SM value:
- Measured value of $(g-2)_{\mu} \to \sim 3\sigma$ deviation: prefer light 2nd gen scalars e.g. $\widetilde{W}_{1,2}\tilde{\nu}_{\mu}$ loops
- All three can be matched in Normal Scalar Mass Hierarchy model (NMH)
- $m_0(1) \simeq m_0(2) \ll m_0(3) \simeq m_{H_{u,d}}$, $m_{1/2}$, A_0 , $\tan\beta$, $sign(\mu)$
- FCNC bounds mainly apply to 1+2 gen; more freedom on splitting 3rd gen.
- HB, Belyaev, Mustafayev, Krupovnickas

NMH model mass evolution

Conclusions

★ NUHM1 model:

- for any $m_0, \ m_{1/2}, \ aneta$ value, two solutions of m_ϕ give correct $\Omega_{CDM} h^2$
- A-funnel or higgsino region
- ★ NUHM2 model
 - can dial to low μ , $2m_{\widetilde{Z}_1} \sim m_A$ regions
 - new \tilde{e}_L and \tilde{u}_R co-annihilation regions
- \star Yukawa coupling unification in HS model
 - BFPZ boundary conditions
 - radiatively driven IMH model
 - reconcile with $\Omega_{CDM}h^2$? light squarks?
- ★ NMH model
 - light $m_{\tilde{e}_{L,R}}$, $m_{\tilde{\mu}_{L,R}}$ masses