Split Supersymmetry

at the ILC (and the LHC)

Wolfgang Kilian (DESY)

LCWS 2005, Stanford March 2005

WK, T. Plehn, P. Richardson, and E. Schmidt, EPJ C 39 (2005) 229 [hep-ph/0408088]

A Short Reminder

N. Arkani-Hamed and S. Dimopoulos, hep-ph/0405159; G. Giudice and A. Romanino, hep-ph/0406088

SUSY is a nice idea — but phenomenologically, the scalar sector is just a mess . . .

... let's imagine, all sfermions (and extra Higgses) are superheavy — say, more than 1000 TeV.

 \Rightarrow many problems of SUSY models would go away.

No FCNC, no dangerous dipole moments, very few new low-energy parameters, and the renormalization group drives the Higgs more heavy. But we may still have dark matter, gauge unification, and Planck-scale SUSY.

A Short Reminder

N. Arkani-Hamed and S. Dimopoulos, hep-ph/0405159; G. Giudice and A. Romanino, hep-ph/0406088

SUSY is a nice idea — but phenomenologically, the scalar sector is just a mess . . .

... let's imagine, all sfermions (and extra Higgses) are superheavy — say, more than 1000 TeV.

 \Rightarrow many problems of SUSY would go away!

No FCNC, no dangerous dipole moments, very few new low-energy parameters, and the renormalization group drives the Higgs more heavy. But we may still have dark matter, gauge unification, and Planck-scale SUSY.

Yes: We have just spoiled the naturalness argument that we like to put forward as an argument for SUSY. **This model is extremely fine-tuned!**

A Short Reminder

N. Arkani-Hamed and S. Dimopoulos, hep-ph/0405159; G. Giudice and A. Romanino, hep-ph/0406088

SUSY is a nice idea — but phenomenologically, the scalar sector is just a mess . . .

 \ldots let's imagine, all sfermions (and extra Higgses) are superheavy — say, more than 1000 TeV.

 \Rightarrow many problems of SUSY would go away!

No FCNC, no dangerous dipole moments, very few new low-energy parameters, and the renormalization group drives the Higgs more heavy. But we may still have dark matter, gauge unification, and Planck-scale SUSY.

Yes: We have just spoiled the naturalness argument that we like to put forward as an argument for SUSY. **This model is extremely fine-tuned!** But ...

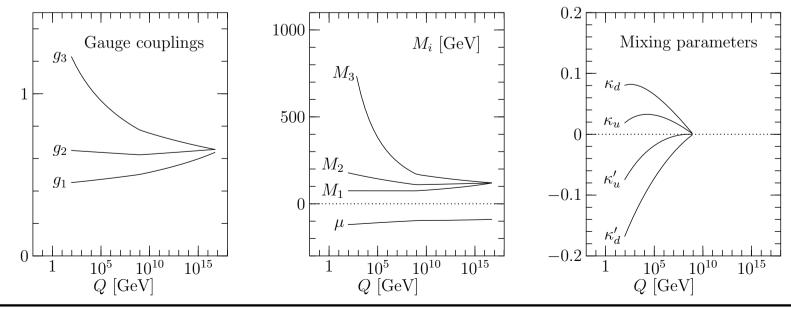
- there may be good reasons for that from beyond field theory
- as phenomenologists, we should consider such a setup as an interesting SM extension

So, let's simply adopt this model as a possible alternative to the ordinary MSSM and look how much we then can learn at colliders.

Split Supersymmetry

The scalar masses are heavy. (Details don't matter for this talk.) Except for one Higgs doublet: this mass is made light by fine-tuning the B-term.

The fermion masses (higgsino, gaugino, gluino) are light. This is possible due to a combination of R parity and PQ symmetry, no accident.


Split Supersymmetry

The scalar masses are heavy. (Details don't matter for this talk.) Except for one Higgs doublet: this mass is made light by fine-tuning the *B*-term.

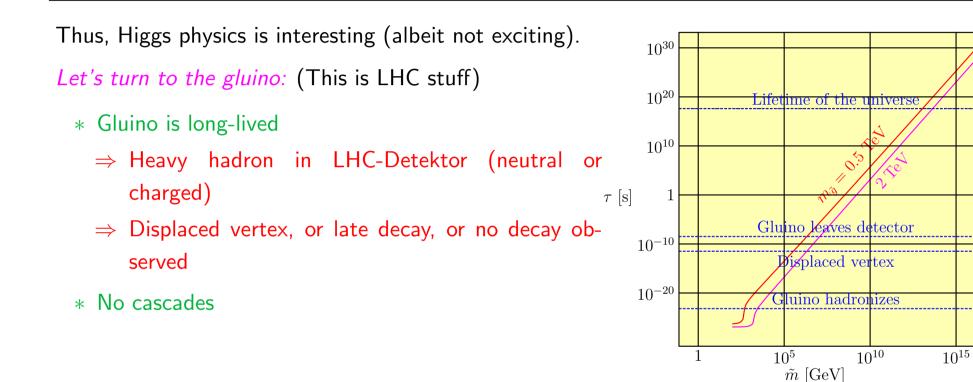
The fermion masses (higgsino, gaugino, gluino) are light. This is possible due to a combination of R parity and PQ symmetry, no accident. We get:

- A gluino which is metastable, because it can only decay via virtual sfermions.
- Charginos and neutralinos, mixed in the usual way. $\tilde{\chi}_1^0$ is a DM candidate, as usual.

At some high scale \tilde{m} , the scalars come in. Here's the RG flow:

W. Kilian, LCWS 2005

The Higgs boson


And this is very welcome: Giudice, Romanino 170 160 150 m_H (GeV) 140 130 120 110 10^{12} 10^{3} 10^{6} 10^{9} 10^{15} m (GeV)

 $\Rightarrow\,$ The Higgs boson of Split SUSY is a SM Higgs

- \Rightarrow Distinguished from plain MSSM: $m_H > 130 \, {
 m GeV}$ preferred
- \Rightarrow Therefore, sizable WW^* branching fraction, but WW on-shell probably still closed.

This is an ideal situation for LHC+ILC. Precision measurements should reveal the *absence* of any further scalar states.

The Gluino

The Gluino

- $\tilde{m} \lesssim 10^6 \dots 10^7 \text{ GeV}$: Standard LHC signatures (maybe anomalous flavor decomposition)
- $\tilde{m} \gtrsim 10^6 \dots 10^7 \text{ GeV}$: Displaced vertices
- $\tilde{m} \gtrsim 10^8 \dots 10^9 \text{ GeV}$: Gluino metastable, decays become rare

In the latter case, the gluino signature is the one of a heavy stable hadron.

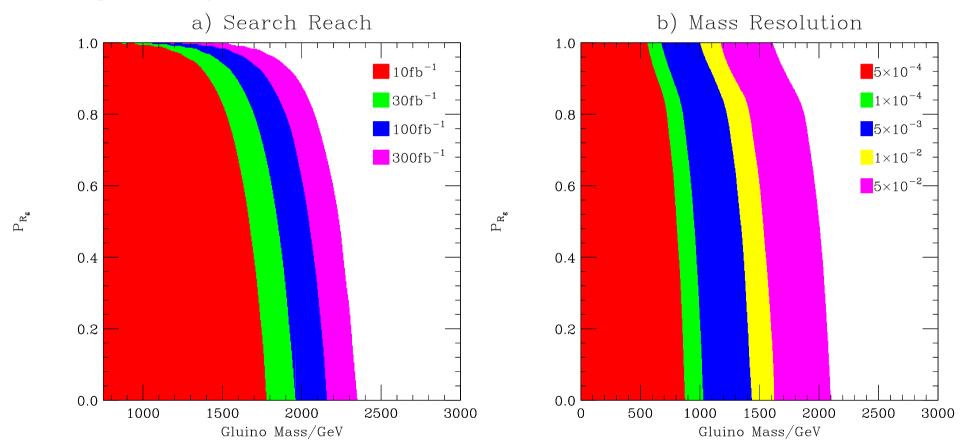
We consider the latter case:

(meta)stable gluino

Gluino production

Production of gluinos: Need model for the fragmentation into R hadrons

 \Rightarrow HERWIG cluster fragmentation (*R* baryons neglected)


- shower jets and cluster into color-singlet combinations (including gluino)
- fragment cluster into R-hadrons according to kinematics; spectrum taken from lattice
- free parameter: probability of producing R_g

	$M_{\tilde{g}} = 50 \text{GeV}$		$M_{\tilde{g}} = 2000 \text{GeV}$	
R-hadron	Number per ${ m fb}^{-1}$	Percentage	Number per ${ m fb}^{-1}$	Percentage
$R_{ ho^0}$	$(4.152 \pm 0.006) \times 10^8$	28.10 ± 0.04	0.5576 ± 0.0007	28.22 ± 0.04
$R_{ ho}$ -	$(2.067 \pm 0.004) \times 10^8$	14.00 ± 0.03	0.2788 ± 0.0005	14.11 ± 0.07
$R_{ ho^+}$	$(2.076 \pm 0.004) \times 10^8$	14.05 ± 0.03	0.2788 ± 0.0005	14.11 ± 0.07
R_{K^0}	$(1.302 \pm 0.003) \times 10^8$	8.81 ± 0.02	0.1730 ± 0.0004	8.76 ± 0.02
$R_{ar{K}^0}$	$(1.291 \pm 0.003) \times 10^8$	8.74 ± 0.02	0.1730 ± 0.0004	8.76 ± 0.02
R_{K^+}	$(1.300 \pm 0.003) \times 10^8$	8.80 ± 0.02	0.1728 ± 0.0004	8.75 ± 0.02
R_{K^-}	$(1.299 \pm 0.003) \times 10^8$	8.79 ± 0.02	0.1725 ± 0.0004	8.73 ± 0.02
R_η	$(1.286 \pm 0.003) \times 10^8$	8.71 ± 0.02	0.1687 ± 0.0004	8.54 ± 0.02
R_D	$(2.1\pm0.7)\times10^4$	$(14.5 \pm 2.6) \times 10^{-4}$	$(6.5 \pm 0.8) \times 10^{-5}$	$(3.2 \pm 0.4) \times 10^{-3}$
R_B	$(7\pm7) imes10^3$	$(0.5 \pm 0.5) \times 10^{-4}$	$8.0\pm2.8\times10^{-6}$	$(0.4 \pm 0.2) \times 10^{-3}$

W. Kilian, LCWS 2005

$\textbf{Charged} \ R \ \textbf{Hadrons}$

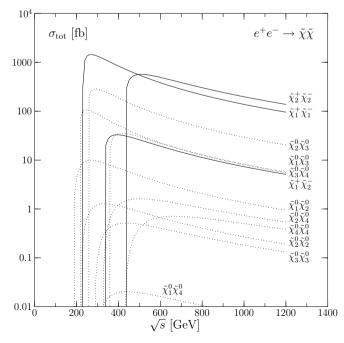
Resulting sensitivity:

 \Rightarrow sensitivity up to 2 TeV, but reduced if R_g fraction large

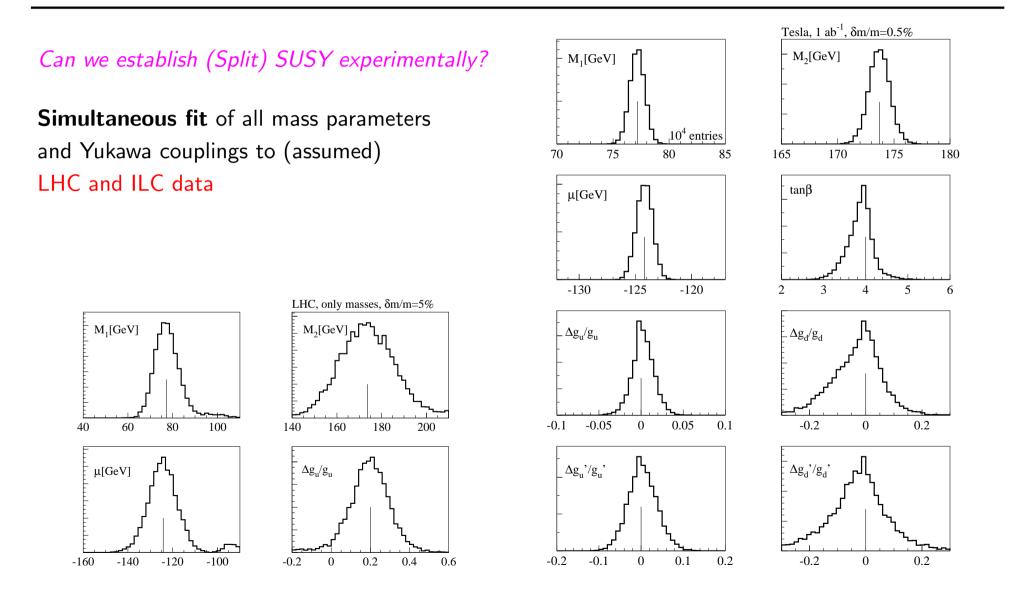
 \Rightarrow beyond detection? Unclear . . . certainly, this doesn't prove SUSY.

Charginos and Neutralinos

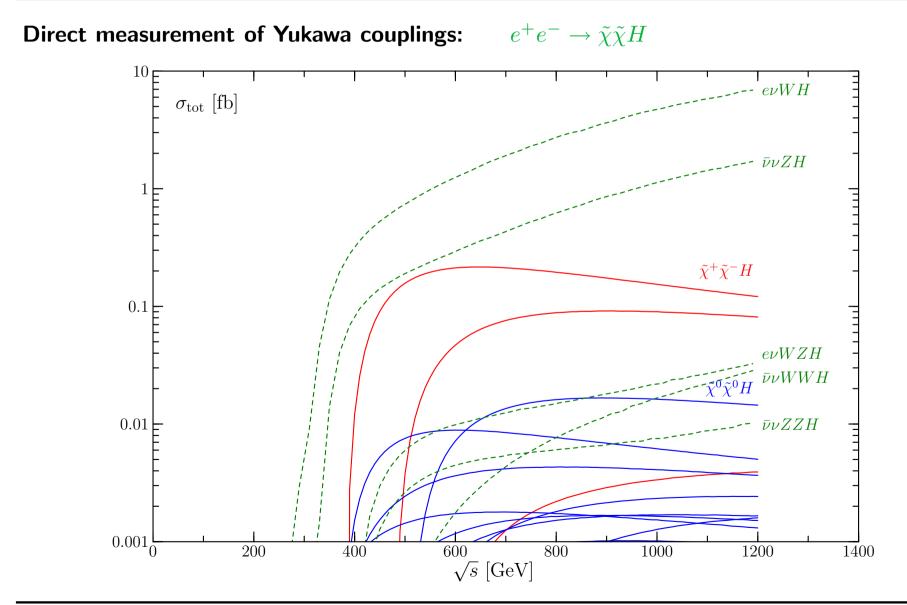
What else can we do?


LHC and **ILC**: Charginos and neutralinos produced by $q\bar{q}$ (e^+e^-) annihilation.

SUSY: At the matching scale, the Yukawa couplings $\tilde{\chi}h\tilde{\chi}$ are all given by gauge couplings and $\tan\beta$.


- $\Rightarrow\,$ measure at least two of them (better more) to establish SUSY and determine $\tan\beta$
- \Rightarrow precise measurement will establish the running between \tilde{m} and v (anomalous contributions between 0 and 20%)

Higgs VEV: Yukawa couplings generate neutralino/chargino mixing matrix


- \Rightarrow measurement of masses, production and decay channels
- $\Rightarrow\,$ need ILC for precision
- \Rightarrow establish dark matter (higgsino content of $\tilde{\chi}_1^0$)

Charginos and Neutralinos

Charginos and Neutralinos

W. Kilian, LCWS 2005

Summary

- MSSM has problems that are usually eliminated by assumptions on SUSY breaking mechanism
- Split Supersymmetry implements a different assumption: MSSM does not solve the naturalness problem all scalars are heavy
 - \Rightarrow ...and flavor problems go away
- Colliders: LHC can see the long-lived gluino; analysis of hadronization and decay is interesting new physics
 - The Higgs boson is a SM Higgs boson, somewhat above the usual (c)MSSM limit. No other scalar bosons are expected at accessible energies.
 - Establishing the model as a SUSY model requires precision measurement of gaugino mixing \Rightarrow ILC can do this.