Precise predictions for SUSY processes at the ILC

KAROL KOVAŘÍK (HEPHY, VIENNA)

IN COLLABORATION WITH W.ÖLLER, CH.WEBER, H.EBERL, W.MAJEROTTO HEP-PH/0401092 HEP-PH/0402134

LCWS05 STANFORD, MARCH 2005

- Important goals of the ILC confirmation of SUSY
 - identifying the SUSY breaking scenario
 - investigating the grand unification
- Precision predictions needed along with precisely defined input parameters.
- Neutralino, chargino, sfermion production processes provide access to the SUSY parameters

 $(M, M', M_Q^2, M_U^2, M_D^2, M_E^2, A_t, A_b, A_{\tau}), (\mu, \tan \beta)$

$\mathcal{O}(\alpha)$ CORRECTIONS TO PRODUCTION PROCESSES I.

SFERMION (3rd gen.) results:

- SUSY-QCD corrections

 [Arhrib, Capdequi-Peyranere, Djouadi '95]
 [Eberl, Bartl, Majerotto '96]
- Yukawa corrections without box [Eberl, Kraml, Majerotto '99]
- electro-weak corrections
 [Arhrib, Hollik '03]
 [Kovarik et al. '04]

NEUTRALINO/CHARGINO results:

- chargino corrections [Blank, Hollik '00]
- neutralino corrections
 [Öller, Eberl, Majerotto '04]
- chargino corrections [Fritzsche, Hollik '04]
- Calculations presented here $\mathcal{O}(\alpha)$ corrections to production processes

Precise predictions for SUSY processes at the ILC

$\mathcal{O}(\alpha)$ CORRECTIONS TO PRODUCTION PROCESSES II.

- Total cross-section $\sigma^{\text{tot}} = \sigma^{\text{tree}} + (\Delta \sigma^{\text{QCD}} +) \Delta \sigma^{\text{weak}} + \Delta \sigma^{\text{QED}}_{uni} + \Delta \sigma^{\text{QED}}_{rem}$
- QED- corrections Bremsstrahlung $\sigma(e^+e^- \rightarrow X\gamma)$ + higher order initial state radiation
- Extensive use of FeynArts & FormCalc & LoopTools (FF) packages
- On-shell renormalization: $\alpha(M_Z)$ or G_{μ} , pole masses
- SPS1a' point input (transformed to on-shell parameters)
- Renormalization scheme and input parameters compatible with the SPA project

Precise predictions for SUSY processes at the ILC

• Counterterm δ_2 example

$$M_i$$
 (pole) = $m_i^{\overline{\text{DR}}} - \hat{\Sigma} \left(q^2 = M_{i,\text{pole}}^2 \right)$

• Counterterm δ_1 more involved + one must include finite shifts ΔM for consistence

• Two different but equivalent methods to include the finite shifts ΔM available

[Eberl, Majerotto, Kincel, Yamada '01], [Fritzsche, Hollik '02]

 $\mathsf{SPA project} - \mathsf{SUSY parameters} \ \overline{\mathrm{DR}} \ \text{ and Pole masses (where possible)} \longrightarrow \mathsf{talk by W.Hollik}$

- SPS1a' $\overline{\mathrm{DR}}$ parameters given at scale $Q = 1 \mathrm{TeV}$

Example: Comparison of values between SPS1a' DR parameters & OS parameters (after finite shifts)

Parameters	SPS1a' [GeV]	OS input [GeV]
$\tan\beta$	10	10.307
M_1	103.216	100.320
M_2	193.305	197.028
μ	402.872	399.936
M_{Q_3}	471.259	507.234
M_{D_3}	501.353	538.920
M_{U_3}	384.585	410.107
M_{L_3}	179.493	181.776
M_{E_3}	109.872	111.568

WEAK CORRECTIONS DEFINITION

SPA weak corrections definition

$$d\sigma^{\text{weak}} = d\sigma^{\text{virt+soft}} + \frac{\alpha}{\pi} ((1 - L_e - \Delta_\gamma) \log \frac{4\Delta E^2}{s} - \frac{3}{2}L_e) d\sigma^{\text{tree}}$$

- ΔE cut-off independent, subtracted contributions $L_e = \log \frac{s}{m_e^2}$
- Universal definition applicable to every process

Feynman diagram weak corrections definition

Include all diagrams except those with an additional photon e.g.

• Definition applicable only to some processes

TOTAL CORRECTIONS

RELATIVE CORRECTIONS

Precise predictions for SUSY processes at the ILC

TOTAL CORRECTIONS

RELATIVE CORRECTIONS

Precise predictions for SUSY processes at the ILC

K. K., LCWS05 Stanford, March 2005

1500

SLEPTON PRODUCTION (3rd gen.)

TAU-SNEUTRINO

Polarized $\tilde{\nu}_{\tau} \, \bar{\tilde{\nu}}_{\tau}$

 σ_L

800

1200

 $\sqrt{s} \, [\text{GeV}]$

 σ_R

30

20

10

0

400

1600

2000

Precise predictions for SUSY processes at the ILC

POLARIZED $\tilde{\tau}_1 \bar{\tilde{\tau}_1}$

K. K., LCWS05 Stanford, March 2005

SQUARK PRODUCTION (3rd gen.)

Precise predictions for SUSY processes at the ILC

K. K., LCWS05 Stanford, March 2005

- Precise predictions and input essential when identifying SUSY breaking scenario
- Full $\mathcal{O}(\alpha)$ corrections to different production processes have been presented
- Compatible input parameters —> directly comparable numerical results