Study of the Higgs-Bosons parity at the ILC

Content:

- CP-sensitive observable
- Detector simulation
- Selection from SM background
- Status of the study
- Conclusion / outlook

Higgs-parity JPC $=0$??

- CP-even SM-like Higgs or CP-odd like e.g. A^{0} in 2HDM?
- $\mathrm{h} \tau \tau$ - coupling transmits Higgs-parity into spin-polarisation of the τ 's

- For τ-decays into 2 or 3 pions via ρ - or a_{1} - resonances

$$
\frac{\left.\Gamma_{\left(\tau^{+}\right.} \xrightarrow[\longrightarrow]{\rho} \pi^{+} \pi^{0} v\right)}{\Gamma_{\text {total }}} \approx 25 \%
$$

$$
\frac{\left.\Gamma_{\left(\tau^{+} \xrightarrow{a}\right.} \pi^{+} \pi^{+} \pi^{-} v\right)}{\Gamma_{\text {total }}} \approx 10 \%
$$

- Reconstruction of the τ-polarisation from the final-states
- Reconstruction of the correlation of the transverse spin-components τ decays simulated with Tauola/Photos

The observable

- Planes spanned by the 4-momenta of the pions

- Correlation sensitive to Higgs-parity :

the acoplanarity Φ.

- Use energies to distinguish between Φ and Φ ' by the sign of $\mathrm{y}_{1} \cdot \mathrm{y}_{2}$

$$
y_{1}=\frac{E_{\pi^{+}}-E_{\pi^{0}}}{E_{\pi^{+}}+E_{\pi^{0}}} \quad y_{2}=\frac{E_{\pi^{-}}-E_{\pi^{0}}}{E_{\pi^{-}}+E_{\pi^{0}}}
$$

\rightarrow only direct accessible information from reconstructed momenta used.
THUS: precise reconstruction of the 4-momenta both for neutral (e.g. the photons from the π^{0}) and charged objects is essential.
\rightarrow Challenge to the performance of a high precision detector, especially to the calorimeter.

Theoretical distributions

Thus:

- $\mathrm{N}_{\text {signal }}$ according to expected σ_{i} and Γ_{i}
- SM-background: $\mathrm{O}\left(10^{8}\right)$ evt / $1 \mathrm{ab}^{-1}$
- include detector-effects like expected precisions on 4-momenta reconstruction
\rightarrow usage of the fast/ parameterized detector simulation SIMDET (based on the TESLA-design)

But:

- generator-level / no detector effects
- pure signal / no backgrounds
- scaled from very high statistics

Quality of the fast simulation (especially calorimeter)

- Precision of the position- and energy-reconstruction for photons
- Resolvability of objects close to each other
- Problem: calorimeter description too much simplified for very specific tasks

Comparison with the GEANT3-based full simulation BRAHMS shows large differences:

- artefacts in the position-resolution
- too high separability for close-by photons
\rightarrow for such exclusive reconstructions: modifications for the fast simulation are necessary.

GEANT 3 studies

Main question: detector response for $\mathrm{E}_{\text {neutral }}$ in the ECAL (e.g. γ from π^{0}):

- precision of the reconstruction of
- the particle energy
- the position and thus the direction of the momentum
- separability of energy-depositions close to each other
- neutral close to an other neutral
- neutral close to a charged energy-deposition
\rightarrow Study of this parameters with GEANT 3 for a signal channel to build a post processing routine: $\mathrm{HZ} \rightarrow \tau^{+} \tau^{-} \nu \nu$ with $\tau^{ \pm} \rightarrow \rho^{ \pm} \nu \rightarrow \pi^{ \pm} \pi^{0} \nu$

Resulting parameterizations:
a) energy resolution for the ECAL: $\sigma=\frac{12 \%}{\sqrt{E}}$

b) Position resolution

Distance at the calorimeter surface (generator-level to closest reconstructed)

Fit function:

$f(x)=a \cdot x \cdot \exp \left(-b \cdot x^{2}\right), b=\frac{1}{2 \cdot \sigma^{2}}$
(1D projection of 2D-Gaussian)

Resulting resolutions:

$$
\begin{aligned}
& \sigma=5.5 \mathrm{~mm} \text { for } E \leq 0.25 \mathrm{GeV} \\
& \sigma=0.8 \mathrm{~mm} \text { for } E \geq 25 \mathrm{GeV}
\end{aligned}
$$

c) Resolvability of 2 photons

Distribution fitted and then scaled to:
$\mathrm{P}_{\text {resolve }}=0$ for $\Delta<2 \mathrm{~cm}$
$(\sim 2 \cdot$ Moliere radius $)$
$P_{\text {resolve }}=1 \mathrm{for} \Delta>14.5 \mathrm{~cm}$ (photons treated as isolated)

d) Resolvability $\gamma \leftrightarrow \pi^{ \pm}$

Plateau at $\Delta=11.5 \mathrm{~cm}$ reached
\rightarrow Fit scaled to:

Comparison of old and new detector-output

Back to the main task

Find and reconstruct the useful $\mathrm{H} \rightarrow \tau \tau$ events.

Example: Higgsstrahlung-process at $\sqrt{s}=350 \mathrm{GeV}$ and $m_{H}=120 \mathrm{GeV}$

$$
\begin{aligned}
& \sigma\left(e^{+} e^{-} \rightarrow Z^{0} H^{0}\right)=0.148 p b \quad \frac{\Gamma_{\left(H^{0} \rightarrow \tau^{+} \tau^{-}\right)}}{\Gamma_{\text {total }}}=9.2 \% \\
& \frac{\Gamma\left(\tau^{+} \xrightarrow{\rho} \pi^{+} \pi^{0} v\right)}{\Gamma_{\text {total }}} \approx 25 \% \quad \frac{\left.\Gamma_{\left(\tau^{+}\right.} \xrightarrow{a} \pi^{+} \pi^{+} \pi^{-} v\right)}{\Gamma_{\text {total }}} \approx 10 \%
\end{aligned}
$$

Expected number of events per $1 \mathrm{ab}^{-1}: 1616$

	$\mathbf{Z} \rightarrow \mathbf{X}$	$\rightarrow \nu \nu$	$\rightarrow \mathbf{e}^{+} \mathbf{e}^{-} / \mu^{+} \mu^{-}$	$\rightarrow \mathbf{q q}$
$\rho \rho$	832	166	56	582
$\mathrm{a}_{1} \rho$	655	131	44	458
$\mathrm{a}_{1} \mathrm{a}_{1}$	129	26	9	90
SUM	1616	323	109	1130

Simulated signal-topology

SM-background considered

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow$	final-state	σ (ab)
$\begin{gathered} Z^{0} Z^{0} \\ \left(\gamma^{*}\left\|Z^{0} \gamma^{*}\right\| Z^{0}\right) \end{gathered}$	41	0.7 *105
	4 q	4.8 *105
	1 qq	4.4 *105
$\mathbf{W}^{+} \mathbf{W}$	Iv lv	1.4 * 10^{6}
	qq lv	5.9 * 10^{6}
	4 q	6.1 * 10^{6}
γ / Z^{0}	all visible	35.0 * 10^{6}
$\mathbf{e}_{\mathbf{i}} \gamma \rightarrow \mathbf{e i}_{\mathbf{i}} \gamma^{*} / \mathbb{Z}^{0}$	qq	13.3 * 10^{6}
	II (visible)	5.7 * 10^{6}
$\mathbf{e}_{\mathbf{i}} \gamma \rightarrow \mathbf{f}_{\mathbf{j}} \mathbf{W}^{ \pm}$	qq	2.5 * 10^{6}
	1 v	1.2 * 10^{6}
HZ \rightarrow X	non-signal	$1.4 * 10^{5}$

All together:

~ 7.4 * 10^{7} events

+ 2 photon background

Spin correlation for SMbackground not taken into account. Assumption: well understood (specially for ZZ)

Event generation with PYTHIA (no full 4-f generator used)

Full interference γ^{*} / Z^{0} taken into account

All τ decayed via
Tauola/Photos

τ-identification

Typically low multiplicity, isolated jets

Thus: Cone-based lepton identification
(based on algorithm by B. Sobloher)

- 1 or 3 tracks
- cone half-angle: 9.5°
- $\mathrm{E}_{\text {seed, min }}>0.7 \mathrm{GeV}$
- $\mathrm{E}_{\text {sum, } \mathrm{cone}, \min }>5 \mathrm{GeV}$
- $\cos \theta_{\text {beam axis }}>9.5^{\circ}$
- isolation to other tracks with half-angle: 12.5°

Preselection

- $21 \mathrm{GeV}<\mathrm{m}_{\text {visible }}<355 \mathrm{GeV}$
- event multiplicity: ≤ 80 reconstructed eflow-objects
- $\cos \theta_{\text {event momentum }} \mid \leq 0.995$
- ≥ 1 pair of hadronic τ-candidates from the lepton ID, with
- angle between the candidates: $75^{\circ}<\alpha<175^{\circ}$
- $21 \mathrm{GeV}<\mathrm{m}_{\tau \tau}<120 \mathrm{GeV}\left(\mathrm{m}_{\mathrm{H}}=120 \mathrm{GeV}\right)$
\rightarrow Effective reduction of backgrounds with very different topology:

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i}} \gamma \rightarrow \mathrm{e}_{\mathrm{i}} \gamma^{*} / \mathrm{Z}^{0} & \rightarrow \mathrm{e}_{\mathrm{i}} \text { qq from } 13.3^{* 1} 0^{6} \text { to } 5218(\sim 0.04 \%) \\
& \rightarrow \mathrm{e}_{\mathrm{i}} \text { II from } 5.7^{* 1} 10^{6} \text { to } 21659(\sim 0.38 \%) \\
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{0} \mathrm{Z}^{0} \rightarrow & \rightarrow \tau \text { qq to } 15006(\sim 25 \%)
\end{aligned}
$$

Keeping the signal-efficiency above 84.5 \% in all signal-channels.

Selection for $\tau \tau$ qq final states

Consists of 4 main steps:

1. event shape
2. τ candidates
3. hadronic Z-decay
4. kinematical fit to the HZ system

Andreas Imhof, DESY

LCWS 2005

16

Kinematic Fit

- $Z \rightarrow q q$ system forced into 2 jets
- soft cut on y_{12}
- Input into the fit:
- 4-momenta of the hadronic jets
- 3-momenta of the τ-candidates, used only as directions
- Constraints:
- invariant mass of the Z^{0} system $=M_{Z}=91.19 \mathrm{GeV}$
- momentum conservation $\Sigma p_{x}=\Sigma p_{y}=\Sigma p_{z}=0$
- energy conservation $\Sigma \mathrm{E}=350 \mathrm{GeV}$
- Only fits with $\chi^{2}<25$ (with 7 d.o.f) are accepted

Results of the fit

Rejecting (almost) all backgrounds beside $\mathrm{ZZ} \rightarrow \tau \tau$ qq and HZ-backgrounds

Recoil-mass w.r.t. the 2 jets

Cut-flow for $\tau \tau$ qq search (most relevant)

	Signal	other HZ	$\mathrm{ZZ} \rightarrow \tau \tau \mathrm{qq}$	$\mathrm{ZZ} \rightarrow 4 \mathrm{q}$	$\mathrm{WW} \rightarrow \mathrm{qq} \mathrm{\tau v}$	$\mathrm{WW} \rightarrow 4 \mathrm{q}$
$\mathrm{N}_{\text {evt }} / 1 \mathrm{ab}^{-1}$	1040	~ 140000	65270	477000	1952000	6081000
preselection	881	4940	14293	8554	198021	142905
evt shape	810	2928	7961	4374	52493	57456
τ-cand.	604	481	2190	7	1980	130
$Z \rightarrow q q$ side	594	467	1942	1	901	30
kin. fit	410	187	97	$/$	6	$/$
$\rho \rho$ and $\mathrm{a}_{1} \rho$	401	126	97	$/$	4	$/$

Resulting in $\rho \rho$-case: $\varepsilon \sim 38 \%$ at S / B ~ 3.05

$$
\mathrm{a}_{1} \rho \text {-case: } \varepsilon \sim 39 \% \text { at } S / B \sim 1.15
$$

Reconstructed acoplanarities

from high statistics and scaled to $N_{\text {exp }} / 1 a b^{-1}$

$A_{H}=\quad 0.116 \pm 0.058$
$A_{A}=\quad-0.132 \pm 0.058$
$\rightarrow \Delta A=A_{H}-A_{A}=0.248$

$$
\begin{array}{lr}
A_{H}= & 0.051 \pm 0.054 \\
A_{A}= & -0.040 \pm 0.054 \\
\rightarrow \Delta A=0.091
\end{array}
$$

Selection for $Z \rightarrow I I, I=e, \mu$

- event-shape like $\cos \theta_{\text {event-momenta }}$
- 1 pair of hadronic τ-candidates
- invariant mass
- angle between the candidates
- $1 \mathrm{e}^{+} \mathrm{e}^{-}$or $\mu^{+} \mu^{-}$pair
- invariant mass
- recoil mass
\rightarrow With only HZ- and ZZ-backgrounds left:

$\rho \rho$-case: signal efficiency $\varepsilon \sim 47.5 \%$, S / B ~ 1.55

$$
\begin{aligned}
& A_{H}=0.041 \pm 0.133 \\
& A_{A}=-0.077 \pm 0.124
\end{aligned}
$$

$$
\rightarrow \Delta \mathrm{A}=0.118
$$

$\mathrm{a}_{1} \rho$-case: signal efficiency $\varepsilon \sim 46.5 \%$, S / B ~ 0.6

$$
\begin{aligned}
& A_{H}=0.034 \pm 0.112 \\
& A_{A}=-0.027 \pm 0.116
\end{aligned}
$$

$$
\rightarrow \Delta \mathrm{A}=0.061
$$

Summary / Conclusion

- τ identification and reconstruction possible at high efficiency with anticipated detector
- Realistic measurement for CP in $\mathrm{H} \rightarrow \tau \tau$ performed
- Including
- detector effects
- full SM-background statistics
- 2-photon backgrounds
- full effects of ISR and FSR
- Significance to distinguish a CP-even from a CP-odd HiggsBoson of 4.7σ for $1 \mathrm{ab}^{-1}$ can be expected
- Techniques like likelihoods, NN could enhance significances

