Study of the Higgs-Bosons parity at the ILC

A. Imhof - DESY

Content:

- **CP-sensitive observable**
- Detector simulation
- Selection from SM background
- Status of the study
- Conclusion / outlook

Higgs-parity J^{PC} = 0??

- CP-even SM-like Higgs or CP-odd like e.g. A⁰ in 2HDM?
- $h\tau\tau$ coupling transmits Higgs-parity into spin-polarisation of the τ 's H⁰ / A⁰

• For τ -decays into 2 or 3 pions via ρ - or a_1 - resonances

- Reconstruction of the τ -polarisation from the final-states
- Reconstruction of the correlation of the transverse spin-components

τ decays simulated with Tauola/Photos

Andreas Imhof, DESY

The observable

- Planes spanned by the 4-momenta of the pions
- Correlation sensitive to Higgs-parity :

the acoplanarity Φ .

• Use energies to distinguish between Φ and Φ' by the sign of $y_1 \cdot y_2$

$$y_1 = \frac{E_{\pi^+} - E_{\pi^0}}{E_{\pi^+} + E_{\pi^0}} \qquad \qquad y_2 = \frac{E_{\pi^-} - E_{\pi^0}}{E_{\pi^-} + E_{\pi^0}}$$

 \rightarrow only direct accessible information from reconstructed momenta used.

<u>THUS</u>: precise reconstruction of the 4-momenta both for neutral (e.g. the photons from the π^0) and charged objects is essential.

→ Challenge to the performance of a high precision detector, especially to the calorimeter.

Andreas Imhof, DESY

Theoretical distributions

Observable proposed by

T. Pierzchała, Z. Wąs, M. Worek

Thus:

- N_{signal} according to expected σ_{i} and Γ_{i}
- SM-background: O(10⁸) evt / 1 ab⁻¹
- include detector-effects like expected precisions on 4-momenta reconstruction
- → usage of the fast/ parameterized
 detector simulation SIMDET
 (based on the TESLA-design)

But:

- generator-level / no detector effects
- pure signal / no backgrounds
- scaled from very high statistics

Quality of the fast simulation (especially calorimeter)

- Precision of the position- and energy-reconstruction for photons
- Resolvability of objects close to each other
- Problem: calorimeter description too much simplified for very specific tasks

Comparison with the GEANT3-based full simulation BRAHMS shows large differences:

- artefacts in the position-resolution
- too high separability for close-by photons
- → for such exclusive reconstructions: modifications for the fast simulation are necessary.

GEANT 3 studies

Main question: detector response for $E_{neutral}$ in the ECAL (e.g. γ from π^0):

- precision of the reconstruction of
 - the particle energy
 - the position and thus the direction of the momentum
- separability of energy-depositions close to each other
 - neutral close to an other neutral
 - neutral close to a charged energy-deposition

 \rightarrow Study of this parameters with GEANT 3 for a signal channel to build

a post processing routine: HZ $\rightarrow \tau^+ \tau^- \nu \nu$ with $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^0 \nu$

Resulting parameterizations:

a) energy resolution for the ECAL:
$$\sigma = \frac{12\%}{\sqrt{E}}$$

c) Resolvability of 2 photons

Distribution fitted and then scaled to:

$$P_{resolve} = 0$$
 for $\Delta < 2$ cm
(~ 2 · Moliere radius)

 $P_{resolve} = 1$ for $\Delta > 14.5$ cm (photons treated as isolated)

Comparison of old and new detector-output

 γ close to charged object (π^{\pm})

Andreas Imhof, DESY

Back to the main task

Find and reconstruct the useful $H\to\tau\tau$ events.

Example: Higgsstrahlung-process at $\sqrt{s} = 350 \, GeV$ and $m_H = 120 \, GeV$

$$\sigma\left(e^{+}e^{-} \rightarrow Z^{0}H^{0}\right) = 0.148 \, pb \quad \frac{\Gamma\left(H^{0} \rightarrow \tau^{+}\tau^{-}\right)}{\Gamma_{total}} = 9.2\%$$

$$\frac{\Gamma\left(\tau^{+} \xrightarrow{\rho} \pi^{+}\pi^{0}\nu\right)}{\Gamma_{total}} \approx 25\% \quad \frac{\Gamma\left(\tau^{+} \xrightarrow{a} \pi^{+}\pi^{+}\pi^{-}\nu\right)}{\Gamma_{total}} \approx 10\%$$

Expected number of events per 1 ab⁻¹: **1616**

	$\mathbf{Z} \rightarrow \mathbf{X}$	$\rightarrow \nu \nu$	\rightarrow e ⁺ e ⁻ / μ ⁺ μ ⁻	→qq
ρρ	832	166	56	582
a 1ρ	655	131	44	458
a ₁ a ₁	129	26	9	90
SUM	1616	323	109	1130

Andreas Imhof, DESY

Simulated signal-topology

 $\begin{array}{l} \underline{\text{Topology:}}\\ e^+e^- \rightarrow Z^0 H^0 \rightarrow qq\tau^+\tau^-,\\ \tau_1^{\pm} \rightarrow \rho^{\pm}\nu \rightarrow \pi^{\pm}\pi^0\nu,\\ \pi^0 \rightarrow \gamma\gamma\\ \tau_2^{\pm} \rightarrow a_1^{\pm}\nu \rightarrow \pi^{\pm}\rho^0\nu \end{array}$

$$z_2^{\pm} \rightarrow a_1^{\pm} \nu \rightarrow \pi^{\pm} \rho^0 \gamma$$

 $\rightarrow \pi^{\pm} \pi^+ \pi^- \nu$

Andreas Imhof, DESY

SM-background considered

e⁺e⁻ →	final-state	σ (ab)	
	4	0.7 *10 ⁵	
Z ⁰ Z ⁰	4 q	4.8 *10 ⁵	
(γ*/Ζ ⁰ γ*/Ζ ⁰)	ll qq	4.4 *10 ⁵	
	ΙνΙν	1.4 *10 ⁶	
W+M-	qq lv	5.9 *10 ⁶	
	4 q	6.1 *10 ⁶	
γ /Ζ ⁰	all visible	35.0 *10 ⁶	
$\mathbf{A} \simeq \mathbf{A} \simeq \mathbf{A} \simeq \mathbf{A}^* / \mathbf{Z}^0$	qq	13.3 *10 ⁶	
	ll (visible)	5.7 *10 ⁶	
$e_{\gamma} \rightarrow f_{\gamma} W^{\pm}$	qq	2.5 *10 ⁶	
	Ιv	1.2 *10 ⁶	
$HZ \to X$	non-signal	1.4 *10 ⁵	

All together:

- ~ 7.4 * 10⁷ events
- + 2 photon background

Spin correlation for SMbackground not taken into account. Assumption: well understood (specially for ZZ)

Event generation with PYTHIA (no full 4-f generator used)

Full interference γ^*/Z^0 taken into account

All τ decayed via Tauola/Photos

Andreas Imhof, DESY

τ -identification

Typically low multiplicity, isolated jets

Thus: Cone-based lepton identification (based on algorithm by B. Sobloher)

- 1 or 3 tracks
- cone half-angle: 9.5°
- $E_{seed,min}$ > 0.7 GeV
- $E_{sum,cone,min} > 5 \text{ GeV}$
- $\cos \theta_{\text{beam axis}} > 9.5^{\circ}$
- isolation to other tracks with half-angle: 12.5 $^\circ$

Preselection

- 21GeV < $m_{visible}$ < 355 GeV
- event multiplicity: ≤ 80 reconstructed eflow-objects
- $|\cos \theta_{event momentum}| \le 0.995$
- \geq 1 pair of hadronic τ -candidates from the lepton ID, with
 - angle between the candidates: 75° < α < 175°
 - 21 GeV < $m_{\tau\tau}$ < 120 GeV (m_{H} = 120 GeV)

→ Effective reduction of backgrounds with very different topology: $e^i \gamma \rightarrow e_i \gamma^*/Z^0 \rightarrow e_i qq$ from 13.3*10⁶ to 5218 (~0.04%) $\rightarrow e_i$ II from 5.7*10⁶ to 21659 (~0.38%) $e^+e^- \rightarrow Z^0 Z^0 \rightarrow \tau\tau qq$ to 15006 (~25%)

Keeping the signal-efficiency above 84.5 % in all signal-channels.

Selection for $\tau\tau$ qq final states

Consists of 4 main steps:

- event shape 1.
- 2 τ candidates
- 3. hadronic Z-decay
- kinematical fit to the HZ system 4.

0,7

0,8

Example for global event shape:

Kinematic Fit

- $Z \rightarrow qq$ system forced into 2 jets
 - soft cut on y_{12}
- Input into the fit:
 - 4-momenta of the hadronic jets
 - 3-momenta of the τ -candidates, used only as directions
- Constraints:
 - invariant mass of the Z^0 system = M_Z = 91.19 GeV
 - momentum conservation $\Sigma p_x = \Sigma p_y = \Sigma p_z = 0$
 - energy conservation $\Sigma E = 350 \text{ GeV}$
- Only fits with $\chi^2 < 25$ (with 7 d.o.f) are accepted

Rejecting (almost) all backgrounds beside $ZZ \rightarrow \tau\tau$ qq and HZ-backgrounds

Cut-flow for $\tau\tau$ qq search (most relevant)

	Signal	other HZ	$ZZ \to \tau\tau \; qq$	$ZZ \rightarrow 4q$	WW→qqτv	WW \rightarrow 4q
N _{evt} / 1 ab ⁻¹	1040	~140 000	65 270	477 000	1 952 000	6 081 000
preselection	881	4 940	14 293	8 554	198 021	142 905
evt shape	810	2 928	7 961	4 374	52 493	57 456
τ-cand.	604	481	2 190	7	1 980	130
Z→qq side	594	467	1 942	1	901	30
kin. fit	410	187	97	/	6	/
ρρ and a_1 ρ	401	126	97	/	4	/

Resulting in $\rho\rho$ -case: $\epsilon \sim 38\%$ at S / B ~ 3.05

a₁ ρ -case: ϵ ~ 39% at S / B ~ 1.15

Andreas Imhof, DESY

Andreas Imhof, DESY

Selection for Z \rightarrow II, I = e, μ

- event-shape like cos $\theta_{\text{event-momenta}}$
- 1 pair of hadronic τ -candidates
 - invariant mass
 - angle between the candidates
- 1 e⁺e⁻ or μ⁺μ⁻ pair
 - invariant mass
 - recoil mass

 \rightarrow With only HZ- and ZZ-backgrounds left:

ρρ-case: signal efficiency ε ~ 47.5%, S / B ~ 1.55

$$A_{H} = 0.041 \pm 0.133$$

 $A_{A} = -0.077 \pm 0.124$

30

25

35

$$\rightarrow \Delta A = 0.118$$

reconstructed acoplanarity angle Φ

$$\begin{array}{rll} a_{1}\rho\text{-case: signal efficiency ϵ} \sim 46.5\%, \ S \ / \ B \ \sim 0.6\\ A_{H} = & 0.034 \pm \ 0.112\\ A_{A} = & -0.027 \pm \ 0.116 \end{array}$$

 $\rightarrow \Delta A = 0.061$

Andreas Imhof, DESY

Summary / Conclusion

- τ identification and reconstruction possible at high efficiency with anticipated detector
- Realistic measurement for CP in $H \rightarrow \tau \tau$ performed
- Including
 - detector effects
 - full SM-background statistics
 - 2-photon backgrounds
 - full effects of ISR and FSR
- Significance to distinguish a CP-even from a CP-odd Higgs-Boson of 4.7 σ for 1 ab⁻¹ can be expected
- Techniques like likelihoods, NN could enhance significances