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TOPICS

e Positron source ( polarized )
e Enhanced polarimetry ( + positrons ?)

e Damping ring

e Beam-based feedback ( IP)

e Beam Instrumentation

o ATF2 proposal (beam @ ILC-like IP ?)
e Supports and vibration control
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TALKS

Polarized positron sources at the ILC V. Bharadwaj, SLAC
Enhanced Fabry-Perot resonators for applications in polarimetry and positron

sources A. Variola, Orsay
Beam dynamics simulation of the y-ray based positron source W. Gai, Argonne
Status of experiment E166 at SLAC R. Poeschl, DESY
Polarized positron generation experiment at KEK-ATF T. Omori, KEK
Damping ring design overview K.-J. Kim, BNL
ATF2 A. Seryi, SLAC
CESR-c wigglers S. Temnykh, Cornell
IP FB system R&D P. Burrows, QMUL
Petra and ATF laserOwire results and plans G. Blair, RHUL
Summary of support tube R&D H. Yamaoka, KEK
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POSITRON PRODUCTION SCHEMES — DRIVE BEAMS

Conventional
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POSITRON DRIVE BEAM PARAMETERS (USLCTOS)

Parameter v-beam (und) e-heam

Eleciron Drive Beam Energy (GeV) 153 6.2

Electron Drive Beam Intensity (10%*10/bunch) 2
Beam Energy Loss (GeV) 4.9
Beam Energy Spread In %() 0.5

Beam Energy Spread Out (%)

Additional linac length (m}

Undulator length (m)

Undulator insertion length (m)

Positron source length (m)
Photon energy (MeV) 10.7
Undulator tvpe K=1: helical
Undulator field (T) 1.07
Undulator period (cm)
Undulator full gap (mm})

Positron yvield?

Expected Positron Polarization (@ full lmminosity)

g Vinod Bharadwaj, SLAC
POLARISED POSITROM SOURCES AT THE ILC vinod@slac.stanford.edu
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Demonstration experiment

Roman Poschl Principle of the E166-Experiment
Target
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- E-166 uses the 50 GeV SLAC-Beam in conjunction with a
1m long helical Undulator for the production of Polarized Photons.

- These photons are converted by a ~0.5 X_ thick Absorber into

FPolarized Positrons (und Electrons).

- The FPolarization of the Positrons (und Photons) is measured

First October 2004 run interrupted by accident
Planned run in May 2005 : confirm low background, see polarized e* ?
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UNDULATOR DESIGN EFFORT - DARESBURY
http:/www.astec.ac.uk/id magPDF%27s/EPACO4/MOPKE064.pdf

Beam Dynamics Studies of
| ILC Positron Source at ANL

g Wei Gai

| LCWS 05, March 19, 2005

Permanent magnet
undulator

l In collaboration with W. Liu, H. Wang and K-J. Kim

Superconductin AR LA R AR ol o . -
medgm,-_ . P - — . Argonne National Laboratory

A U.S. Department of Energy
L d Office of Science Laboratory
== Operated by The University of Chicago

B Polarized positron source using helical undulator and

the ILC main linac electron beam is feasible )
B As easy as an undulator-based unpolarized source I:> Base-line ?

S U M M ARY B Reliability issues need to be fully understood

B Positron workshop in Daresbury (April 10-13)
&- B Discuss issues for all positron source schemes

P L AN S B Organize who is doing what

B Prepare plan for Snowmass

B Snowmass August 14-27
E CDR plan
B R&D plan for TDR
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Requirements for ILC Damping Ring

Damp;ng Ring Topics

Compress 1 ms linac bunch train in to a “reasonable size” ring
- Fast kicker

2820 bunches, 2x101 electrons or positrons per bunch,
bunch length= 6 mm

- instabilities
Damping of ye, = 10- 2 m-rad positron beams to
(v&w» 7£,)=(8 x 10-6,2 x 10-6) m-rad
- Low emittance
Cycle time 0.2 sec> 1=27 ms
- Damping wiggler
Dynamic aperture 210 o
- Injection loss <1 %

Lattice design and optimization
- TME or FODO
Dynamic aperture
Automatic lattice design
Space charge tune shift
- Coupling bump
Collective effects
- Electron cloud, fast ion—= vacuum vessel and level
Novel schemes
Tracking to determine injection efficiency
Error tolerance in lattice and wiggler

Wiggler technology CESR-c experience

Kicker R&D ] )
And many more! with wigglers

Some TLC Damping Ring Designs

Parameters
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“Dog-bone”
remains favored ?
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High Emargy Acoalarators Wedaarah Urgariiatan (K EH

ATF2 Gouals & stages:
(A) Small beam size (with Shintake BSM at IP)

(A1) Obtdin g, ~ 35nm
(A2) Maintain for long time

(B) Stabilization of beam center (with nano-BPM at IP)
(B1) Down to < 2nm by nano-BPM
(B2) Bunch-to-bunch feedback of ILC-like train
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As ILC, ATF2 critically depends on instrumentation ILC-like train (~20b * 300ns) from ATF DR

Beom _ built-in low

"_"'":’.'-'4-'".._,'3.'.é'F5e"tL' re kicker

Beam Size Monitor to confirm 35nm beam size g

- shorter laser wavelength than what used at FFTB, to resolve 30nm : T —

— easier for single bunch, more difficult for ecich bunch in the train Plate
Vocuum chamber

nano-BPM dt IP to see the nm stability

- complicated by large beam divergence, angle jitter and x-y coupling

Laser-wire to tune the beam ATF laser-wire Coble comnector
Cavity BPMs to provide stable orbit Program — 1um Flange
260 y )
" n 1 | The plate is split for the beam fo

Movers, BT T Essential for the goal (B) ' be slowty moved info the kicken
active stabilization, bttt
alignment system, A P e W ¢ Two approaches of counter-fed stripline kicker:

etc. - il e & - — TDRIBINP kicker (two sets in ATF DR: at ZH39R and OMéR1)

— low aperture (5mm) kicker with local orbit correction before ejection (require
modification of existing septum to reduce thickness of its 22mm knife)

Time-line — international participation
1. Much ILC — relevant ¢ January - March: preparation of the proposal document

tec h n ica| testi N g - presently ~2/3 of material collected, editing is ongoing

2 Trai ning Component ¢ Finalize the design and proposal in June 05 (BDIR workshop in UK)
. - negotiate contributions from participating institutions

3. Some aSpeCtS harder ¢ Start hardware production in mid 2005, dim for the first beam in FF
than needed for ILC at the beginning of 2007
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March 2005: Commission final version of superfast
processor + jitter monitor

May 2005: FONT3 closed-loop feedback tests

Intra-train beam feedback / During 2005: Develop prototype for FONT4 digital

b5 Igstline of detence . feedback system for ILC bunch spacin
against relative beam //"”'/ y P g

misalignment _‘ o | ezt ) December 2005: First commissioning studies with
[ prototype digital system: 3 bunches extracted from ATF

Key components: . ¥ ring w. spacing 150ns
Beam position monitor

(BPM) N Spring 2006: First feedback tests with digital system + 3
Signal processor - ILC bunches

kisoipiidalgial 2007 (?): Feedback tests w. 20 bunches @ 337ns
E.M. kicker TESLA TDR: principal IR
Fast FB circuit

Intra-train Beam-based Feedback

Study of performance of FB hardware in realistic IR environment:

beam-misalignment correction
d e+e- and gamma backgrounds

Philip Burrows LCWS05, Stanford 20/3/05

JLHHMJIIN

Simulating e+e- and gamma fluxes in SLAC A-line:
AT 2005/6: install BPM and study noise/long-term radiation effects

|
s ker

Sker =-a.3-5.05 m - Concerns about EM pickup in FB BPM - test in IR mockup?

L4

_ : i Intra-train beam feedback technology widely applicable:
A o — — | emergency fast beam abort (DONT)?
. "n beam position stabilisation for diagnostics:
laserwire, bunch-length monitor, Shintake monitor ...

[l 'f!fﬁlﬁff|_ll;__Q___:tj__

WY

Need to optimise IP feedback component locations

kicker Need to produce engineered system designs for TDR
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Summary of Support tube R&D

_Tungsten masks(100mm)

KEK H. Yamaoka / CFRP tube(5mm]
r F] : ".f__ - f___

\

{ ?’ 51:%
Natural frequency ~ 70 Hg 1+ T 7700 | T
512 22 % BELDD A f

1T | e

» Tungsten tube: 100mm thick, CFRP: 5mm thick
— Correlation is given to both-sides tubes in oscillating behavior.

- In case of L*=2m;

Support position: Both ends + 3.85m from I.P.
- In case of L*= 4m;

Support position: Both ends

- Active vibration isolation system is necessary.
— - Amplitude is magnified if support tube is mount on a support
stand.
- To eliminate culture noise.
- CFRP tube is not efficient to reduce amplitude less than 2nm.

- It is necessary to design the stiff support base as possible
— Natural frequency becomes high.
— Amplitude decreases in proportion to frequency.
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Conclusions

e Much activity...
e \Wide range of topics...
e Increasing participation from particle physicists

e Appropriate balance to be found between generic
and streamlined R&D work

e Important GDE task to structure / orient the work
while continuing to build a wide community base
to exploit the vast amount of competence
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