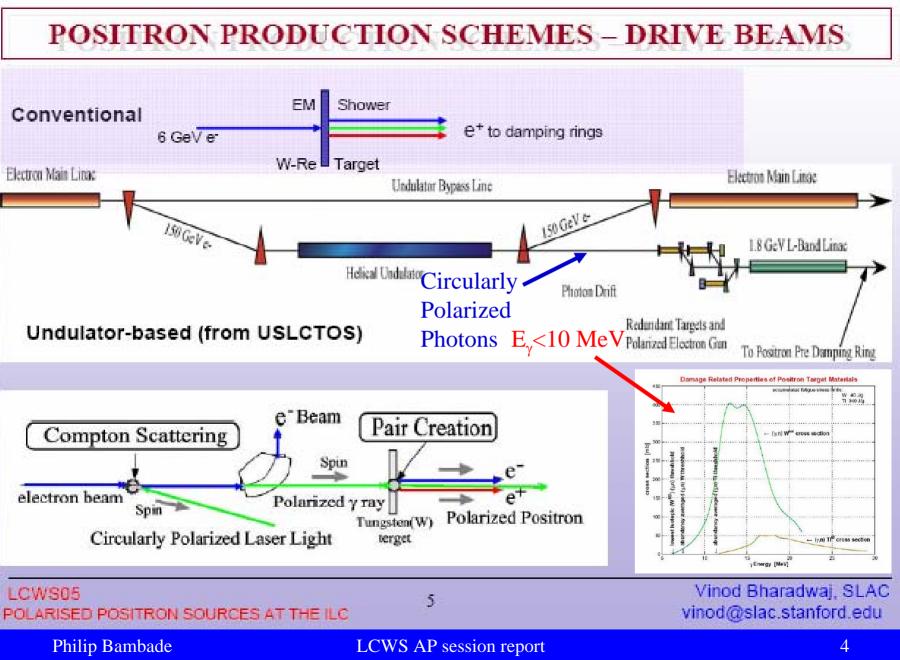
Accelerator Physics Topics REPORT

Philip Bambade LAL-Orsay


LCWS 2005 Stanford, 22 March 2005

TOPICS

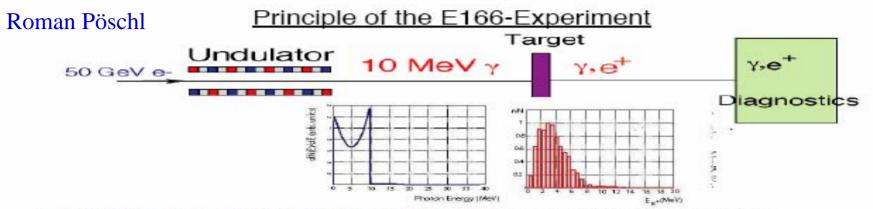
- Positron source (polarized)
- Enhanced polarimetry (+ positrons?)
- Damping ring
- Beam-based feedback (IP)
- Beam instrumentation
- ATF2 proposal (beam @ ILC-like IP ?)
- Supports and vibration control

TALKS

Polarized positron sources at the ILC V. Bharadwaj, SLAC Enhanced Fabry-Perot resonators for applications in polarimetry and positron A. Variola, Orsay sources Beam dynamics simulation of the γ -ray based positron source W. Gai, Argonne Status of experiment E166 at SLAC R. Poeschl, DESY Polarized positron generation experiment at KEK-ATF T. Omori, KEK Damping ring design overview K.-J. Kim, BNL A. Seryi, SLAC ATF2 **CESR-c** wigglers S. Temnykh, Cornell IP FB system R&D P. Burrows, QMUL Petra and ATF laser0wire results and plans G. Blair, RHUL Summary of support tube R&D H. Yamaoka, KEK

Stanford March 17-22 2005

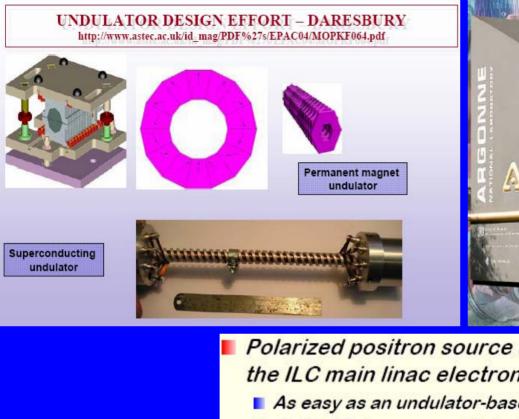
POSITRON DRIVE BEAM PARAMETERS (USLCTOS)


Parameter	γ-beam (und)	e-beam
Electron Drive Beam Energy (GeV)	153	6.2
Electron Drive Beam Intensity (10**10/bunch)	2	2
Beam Energy Loss (GeV)	4.9	-
Beam Energy Spread In %() 0.5		-
Beam Energy Spread Out (%)	0.46	_
Additional linac length (m)	170	230
Undulator length (m)150Undulator insertion length (m)790		-
Positron source length (m)	Positron source length (m)450Photon energy (MeV)10.7Undulator typeK=1; helical	
Photon energy (MeV)		
Undulator type		
Undulator field (T)	1.07	а л .
Undulator period (cm) 1		
Undulator full gap (mm)	б	
Positron yield [†]	1.5	1.5
Expected Positron Polarization (@ full luminosity)	40-70%	

POLARISED POSITRON SOURCES AT THE ILC

9

Vinod Bharadwaj, SLAC vinod@slac.stanford.edu


Demonstration experiment

- E-166 uses the 50 GeV SLAC-Beam in conjunction with a 1m long helical Undulator for the production of Polarized Photons.
- These photons are converted by a ~0.5 X_o thick Absorber into Polarized Positrons (und Electrons).
- The Polarization of the Positrons (und Photons) is measured

First October 2004 run interrupted by accident Planned run in May 2005 : confirm low background, see polarized e⁺ ?

Philip Bambade

Beam Dynamics Studies of ILC Positron Source at ANL

Wei Gai

LCWS 05, March 19, 2005

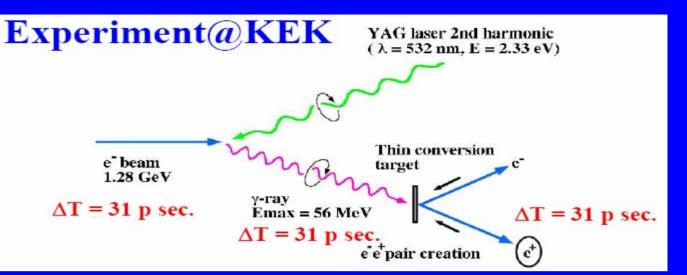
In collaboration with W. Liu, H. Wang and K-J. Kim

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science

- Polarized positron source using helical undulator and the ILC main linac electron beam is feasible Base-line ?
 - As easy as an undulator-based unpolarized source
 - Reliability issues need to be fully understood
 - Positron workshop in Daresbury (April 10-13)
 - Discuss issues for all positron source schemes
 - Organize who is doing what
 - Prepare plan for Snowmass
- Snowmass August 14-27
 - CDR plan
 - R&D plan for TDR

Philip Bambade


SUMMARY

&

PLANS

LCWS AP session report Stanford March 17-22 2005 7

Compton based

measured e⁺ polarization ~ 80%

ILC : ~ 100 laser !

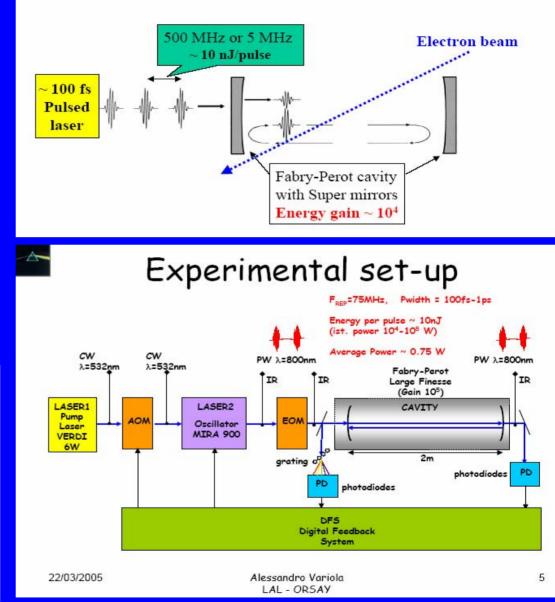
Positron: production, selection, and polarimetry

Philip Bambade

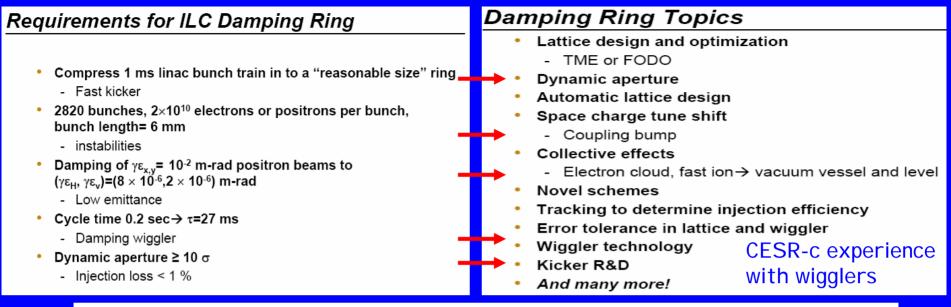
High gain (10⁴) 100 fs laser amplification in Fabry-Perot cavity :

Option for polarimetry ?

Generic technical R&D + other potential uses

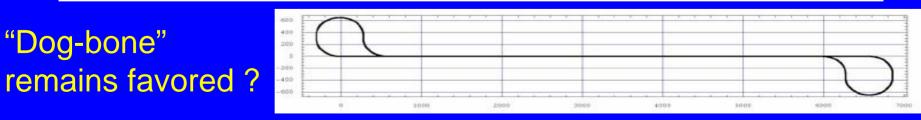

- γγ-collider
- e+ Compton source

LAL/Orsay

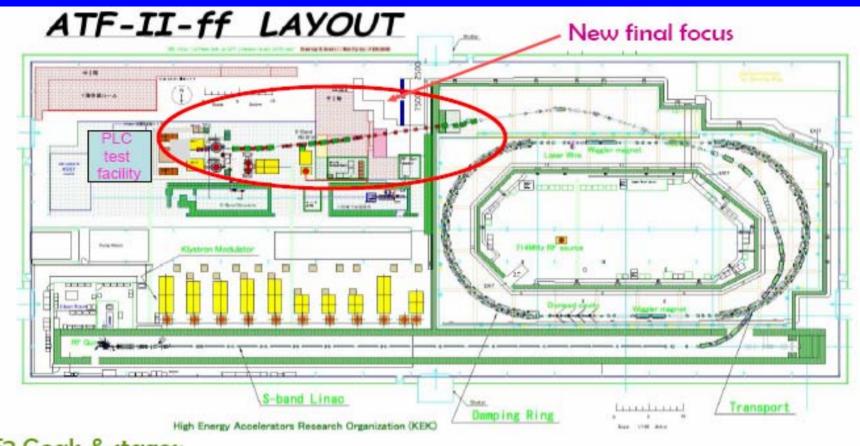

EuroTeV

BRISSON Violette CHICHE Ronic CIZERON Richard GUILHEM Gérard JACQUET-LEMIRE Marie JEHANNO Didier MARIE Rodolphe MOENIG Klaus PASCAUD Christian SOSKOV Viktor VARIOLA Alessandro ZHANG Zhiqing ZOMER Fabian

Laser amplification cavity for FLC polarimeter



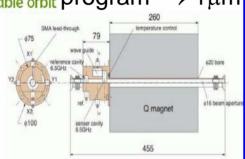
Philip Bambade



Some ILC Damping Ring Designs

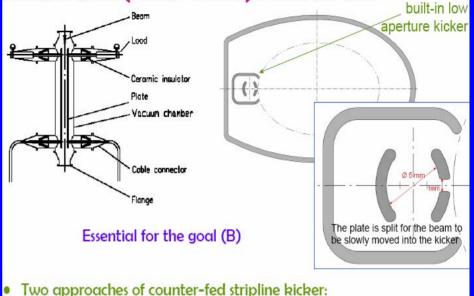
Parameters	TESLA DB	SLAC DB	LBL (DB)	ANL-FNAL Circular
	(W. Decking)	(Y. Cai)	(A. Wolski)	(A. Xiao, L. Emery)
Energy E(Gev)	5	5	5	5.0
Circumference (m)	17,000	17,014	15,815	6114
Horizontal emittance (nm)	0.50	0.62	0.715	0.8
Damping time (ms)	28	27	27	27
Tunes, v _x ,v _y ,v _s	76.31, 41.18, 0.071	83.73, 83.65, 0.072	75.78, 76.41, 0.41	56.58,41.62,0.0348
Momentum compaction α_c	1.22x10 ⁻⁴	1.11x10 ⁻⁴	5.6x10 ⁻⁴	1.42x10 ⁻⁴
Bunch length σ _z (mm)	6.04	5.90	6.0	6
Energy spread σ _e /E	1.29x10 ⁻³	1.30x10 ⁻³	1.63x10 ⁻³	1.3x10 ⁻³
Chromaticity ξ_x , ξ_y	-125,-62.5	-105.27, -106.70	-90.98, -94.86	-74.4,-55.4
Energy loss per turn (MeV)	20.4	21.0	19.75	7.73
Cavity Voltage (MV)	50	50	312	27

Philip Bambade


ATF2 Goals & stages: (A) Small beam size (with Shintake BSM at IP) (A1) Obtain σ_y ~ 35nm (A2) Maintain for long time (B) Stabilization of beam center (with nano-BPM at IP) (B1) Down to < 2nm by nano-BPM (B2) Bunch-to-bunch feedback of ILC-like train

Philip Bambade

As ILC, ATF2 critically depends on instrumentation

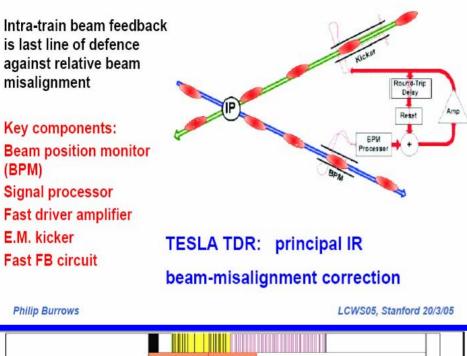

- Beam Size Monitor to confirm 35nm beam size
 - shorter laser wavelength than what used at FFTB, to resolve 30nm
 - easier for single bunch, more difficult for each bunch in the train
- nano-BPM at IP to see the nm stability
 - complicated by large beam divergence, angle jitter and x-y coupling
- Laser-wire to tune the beam
- Cavity BPMs to provide stable orbit $program \rightarrow 1 \mu m$

 Movers, active stabilization, alignment system, etc.

ATF laser-wire

ILC-like train (~20b * 300ns) from ATF DR

- TDR/BINP kicker (two sets in ATF DR: at ZH39R and QM6R.1)
- low aperture (5mm) kicker with local orbit correction before ejection (require modification of existing septum to reduce thickness of its 22mm knife)


 Much ILC – relevant technical testing
 Training component
 Some aspects harder than needed for ILC

Philip Bambade

Time-line \rightarrow international participation

- January March: preparation of the proposal document
 - presently ~2/3 of material collected, editing is ongoing
- Finalize the design and proposal in June O5 (BDIR workshop in UK)
 - negotiate contributions from participating institutions
- Start hardware production in mid 2005, aim for the first beam in FF at the beginning of 2007

Intra-train Beam-based Feedback

kicker FB BPM

March 2005: Commission final version of superfast processor + jitter monitor

May 2005: FONT3 closed-loop feedback tests During 2005: Develop prototype for FONT4 digital feedback system for ILC bunch spacing

December 2005: First commissioning studies with prototype digital system: 3 bunches extracted from ATF ring w. spacing 150ns

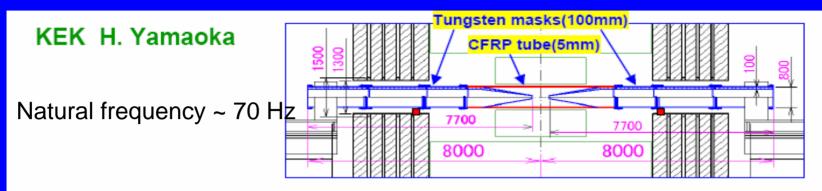
Spring 2006: First feedback tests with digital system + 3 ILC bunches

2007 (?): Feedback tests w. 20 bunches @ 337ns

Study of performance of FB hardware in realistic IR environment: e+e- and gamma backgrounds

Simulating e+e- and gamma fluxes in SLAC A-line: 2005/6: install BPM and study noise/long-term radiation effects

Concerns about EM pickup in FB BPM – test in IR mockup?


Intra-train beam feedback technology widely applicable: emergency fast beam abort (DONT)? beam position stabilisation for diagnostics: laserwire, bunch-length monitor, Shintake monitor ...

Need to optimise IP feedback component locations

Need to produce engineered system designs for TDR

Philip Bambade

Summary of Support tube R&D

- Tungsten tube: 100mm thick, CFRP: 5mm thick
 → Correlation is given to both-sides tubes in oscillating behavior.
- In case of L*= 2m;
 Support position: Both ends + 3.85m from I.P.
- In case of L*= 4m; Support position: Both ends
- Active vibration isolation system is necessary.

 \rightarrow $\,\cdot\,$ Amplitude is magnified if support tube is mount on a support stand.

- To eliminate culture noise.
- CFRP tube is not efficient to reduce amplitude less than 2nm.
- It is necessary to design the stiff support base as possible
- \rightarrow Natural frequency becomes high.
 - \rightarrow Amplitude decreases in proportion to frequency.

8

Conclusions

- Much activity...
- Wide range of topics...
- Increasing participation from particle physicists
- Appropriate balance to be found between generic and streamlined R&D work
- Important GDE task to structure / orient the work while continuing to build a wide community base to exploit the vast amount of competence