

at Stanford Linear Accelerator Center

LCWS '05 Machine Detector Interface Design Updates

Tom Markiewicz SLAC 22 March 2005

ILC WG4 "Strawman" Layout of BDS with 20 mrad and 2 mrad IRs logically complete

Warm LC Collimation System Design Updated to Profit from Cold Bunch Structure: Expand Beam Size at Spoilers to Make them "Indestructible"

ITRP NLC Betatron Collimation Lattice optimized for consumable spoilers: At max $\beta_x * \beta_y = 6E4 m^2$

ILC Lattice (FF9): At max $\beta_x * \beta_y = 6E5 m^2$ suitable for passive survival spoilers

Tom Markiewicz

Pre-IP Chicane-based Polarimeter

- Requires ~50 meters length
- Same B-field at Z-pole, 250 GeV and 500 GeV running
- Same magnet design as for upstream energy chicane
- Good acceptance of Compton Spectrum at all energies without changing laser wavelength

Upgrade to TESLA Design: Minimal space and no special magnets required

Model studies based innovative moveable laser beam, detailed vacuum chamber & detector design ongoing (Meyners)

Detailed Layout of Energy & Polarimeter Chicanes in 20mrad Extraction Line

International Linear Collider

at Stanford Linear Accelerator Center

Electron/Positron Spin Rotation for 2-IRs

Moffeit

nternational Linear Collider

Stanford Linear Accelerator Center

Final Doublet Magnet Design

γγ accommodated within 20 mrad

Anti-solenoids

VXD / Beam Pipe Tweaked for SiD

Maruyama

11/20

New SiD VXD with 12mm radius beampipe

Old SiD VXD with 10 mm radius beampipe

Pair region plotted for ILC Nominal IP Parameters 5 Tesla, 20 mrad

Pair region plotted for NLC IP Parameters 5 Tesla, 20 mrad

Excerpt from ILC-WG1 Parameter Tables Nominal to High Lum Sets

500 GeV 11.3 MW	Nominal	HighLum	
Lum	2.0E38	4.9E38	
dB	2.2%	7%	
Ng	1.3	1.7	
Upsilon	0.046	0.133	
P-g	250kW	790kW	
1 TeV	Nominal	HighLum	
18.1MW			
Lum	2.8E38	7.9E38	
dB	5.0%	18%	
Ng	1.4	2.2	
Upsilon	0.109	0.376	

Also, variation and duty factor of divergence angles, photon power, etc. as beams move into and out of collision (study loss as a function of dy) nternational Linear Collider nt Stanford Linear Accelerator Center

20 mrad Extraction Line Modified for Magnet developments, Newest IP Parameters & Double Chicane

Tom Markiewicz

Particle Loss in 20 mrad Extraction Line

Nosochkov

E _{cm} (GeV)	Params	∆y (nm)	Max e x'/y'(urad)	Max g x'/y'(urad)	Emin/ E0	Power loss F-D / D-F
500	Nom.	0	530/250	370/210	0.36	0/0
500	Nom.	200	470/670	370/540	0.36	6.4/1.4W
500	High	0	1270/430	720/320	0.17	1.8/3.5 kW
500	High	120	1280/1420	780/1230	0.17	14/10 kW
1000	Nom	0	500/160	270/150	0.2	120/460 W
1000	Nom	100	420/570	420/570	0.19	3.9/2.0 kW
1000	High	0	2010/490	940/300	0.063	48 / 49 kW
1000	High	80	1730/1590	970/1200	0.062	325/274 kW

First Design of "Complete" 2mrad IP to Dump Extraction Line

15/20

International Linear Collider

at Stanford Linear Accelerator Center

First Loss Studies in 2 mrad Crossing Extraction Line

Turtle tracking. Y(mm) vs S(m)

Magnets, Chicane, Optics to Chicane focus require optimization

nternational Linear Collider

Stanford Linear Accelerator Center

Collimators at 56m (1.3kW) / 84m (23kW) for low E tail of nom 250 GeV beam & cooling for SR on Beam pipe (z=30-60m, 5kW) need study

Beam Losses	QD0	QEXF1
500, Nom., dy=0, dy=200nm	0	0
500 GeV, High Lum, dy=0	250W	50W
500 GeV, High Lum, dy=0	350W	400W
1 TeV, Nom, dy=0, dy=100nm	0	0

Zero mrad Crossing Angle Study RF Kicker Design and Extraction Line Analysis

Iwashita

International Linear Collider

at Stanford Linear Accelerator Center

Keller

MPS Issues

Effect of L*, Crossing angle & aperture size on backgrounds, electron ID Buesser

nternational Linear Collider

Lumi-Cal Mech. Design to insure Alignment accuracy (Lohmann)

Z

100

75

50

25

0

spectrum

200

unstructed vis

W-Diamond BeamCal

Radiative Return Measurement of E_{beam} knowledge of detector L/R to <1E-4 (Moenig)

100

Tool Development: Background Studies

MARS implementation for BDS: Activation, Shielding, Muons (Kostin)

GEANT4 Based Beamline Simulation BDSIM with SR, muon, neutron production processes (Blair)

Forward LD Geometry in GEANT4 (Buesser)

Concluding Remarks

ILC-WG4 / WWS-MDI have been working at a furious pace since ITRP decision to understand enough detail of complete design to convert strawman to CDR baseline:

- Much communication
- ~2 months between design iterations at intl workshops
- June UK meeting, July Korea meeting, Snowmass, November Vienna ECFA

Result is a design which, to first order, satisfies the concern of all players that we investigate layout parameter space fully

- Much work required to evaluate, understand and improve physics capability, performance flexibility and engineering requirements of each IR with each detector
- My apologies for concentrating on progress of IR layout without explicitly showing results of studies presented

Opinions of the larger community, based on these studies, will be required before any baseline decision can be made

Interface to CF / Engineering Beginning

nternational Linear Collider

