LCWS05 2005.03.22 Stanford Univ. K.Kato (Kogakuin)

Highlights

Kato	Electroweak Correction for the Study of Higgs Potential in LC	jointly with Group A: Higgs and EWSB
Heinemeyer	Recent higher-order corrections in the r/cMSSM Higgs sector	
Kniehl	Dominant two-loop electroweak correction to H->2gamma	EWOD
Hahn	New Developments in FormCalc	
Kuehn	Sudakov Logarithms in N^3LL Approximation	
Martin	Precision corrections to sfermion masses	
Dixon	Practical spinoffs from twistor space	
Mitov	Heavy Quark Fragmentation Function at NNLO	
Dittmaier	Electroweak corrections to four-fermion production	
Freitas	Precise predictions for the effective weak mixing angle	jointly with Group C: Precision
Stoeckinger	Two-Loop Contributions to Delta(Rho) and the W- mass prediction in the MSSM	
Penaranda	Electroweak precision observables in the NMFV MSSM	

 $e^+e^- \rightarrow 4f$

- The great job is accomplished by Denner, Dittmaier, Roth, Wieders hep-ph/0502063
- Theoretical uncertainty at threshold
 2% → a few 0.1%
- RacoonWW \rightarrow Racoon4f
 - 40 hexagons

W-production angle distribution at $\sqrt{s} = 500 \, \mathrm{GeV}$

Significant distortion of shape w.r.t. DPA at ILC energies

→ Important for TGC studies at ILC

Now, RC for important 3,4 body channels are available

Full 1-loop RC available

 $e^+e^- \rightarrow v \overline{v} H$

 $e^+e^- \rightarrow t\bar{t}H$

 $e^+e^- \rightarrow ZHH$

$$e^+e^- \rightarrow e^+e^-H$$

 $\rightarrow ttH$

GRACE, PLB559(2003)252 Denner et al., NPB660(2003)289

GRACE, PLB571(2003)163 You et al., PLB571(2003)85 Denner et al., PLB575(2003)290

GRACE, PLB576(2003)152 Zhang et al., PLB578(2004)349

GRACE, PLB600(2004)65

$$e^+e^- \rightarrow v \overline{v} \gamma v = v_\mu, v_e$$

GRACE, NIM A534(2004)334

Chen Hui etal., NPB683 (2004) 196

 $e^+e^- \rightarrow v v H H$ LCWS05

GRACE, Talk by Y.Yasui at Durham(Sep.2004)

H→vv

- SM Higgs has intermediate mass: $M_H = 114^{+69}_{-45}$ (EWWG).
- $B(H \rightarrow \gamma \gamma) \lesssim 0.3\%$ in this M_H range.
- $H\gamma\gamma$ coupling sensitive to new charged heavy particles.
- At ILC, $H \rightarrow \gamma \gamma$ has clear signal.
- At photon collider, $\sigma(\gamma\gamma \to H) \propto \Gamma(H \to \gamma\gamma)$.
- At LHC, $H \rightarrow \gamma \gamma$ important discovery mode.

By B.Kniehl

• Automatize calculation:

- QGRAF Nogueira: generates diagrams

- q2e Seidensticker: converts output
- exp Seidensticker: performs asymptotic expansion and generates relevant subdiagrams according to hard-mass procedure
- MATAD Steinhauser: calculates diagrams

Conclusion

• Dominant two-loop electroweak $\mathcal{O}(G_F M_t^2)$ correction to $\Gamma(H \to \gamma \gamma)$ for $M_W \lesssim M_H \lesssim 2M_W$ available as expansion in $\tau_W = (M_H/2M_W)^2$ through $\mathcal{O}(\tau_W^4)$.

Method

- Reduction by approx. -2.5% -2%.
- Positive QCD correction slightly overcompensated.
- Net effect of known corrections -2% -1%.

r/cMSSM Higgs

MSSM Higgs is connected to other sectors through loops. \rightarrow Require theoretical understanding in high precision.

by S.Heinemeyer

4. Conclusinos

- The LC will provide high precision results for a light r/cMSSM Higgs
- MSSM Higgs masses and couplings is connected via radiative corrections to all other sectors
- Evaluation of $\mathcal{O}(\alpha_s \alpha_s)$ corrections in the rMSSM:
 - new result for $\tan \beta \neq \infty$
 - investigation of different renormalization schemes
 ⇒ error estimate from scheme and scale dependence
 - $-\mu > 0$: corrections $O(100 \text{ MeV}) \Rightarrow$ under control
 - $-\mu$ < 0: corrections O(2-3 GeV)error estimate O(2 GeV) ⇒ not under control
- Evaluation of $\mathcal{O}(\alpha_s \alpha_t)$ corrections in the cMSSM:
 - new renormalization for complex parameters
 - \tilde{b} sector enters
 - $-\phi_{A_t}$ dependence modified
 - $-\phi_{M_3}$ dependence $\mathcal{O}(1 \text{ GeV})$

GigaZ-precision: $\delta M_W \approx \pm 7 \text{MeV}, \delta \sin^2 \theta_{\text{eff}}^{\text{lept}} \approx \pm 1.3 \times 10^{-5} \Leftrightarrow \text{sensitive to}$ contributions $\delta(\Delta \rho) \approx 10^{-4}$

 $\Delta \rho(\mathcal{O}(\alpha_{t,b}^2))$ only well-defined in gaugeless limit $\Rightarrow M_h = 0$ in the MSSM!

- Either clean MSSM-calculation with $M_h = 0$
- Or calculation with $M_h \neq 0$ and different $m_{\tilde{b}}$ -renormalization: can be interpreted as 2HDM-calculation \Rightarrow explanation why it is still finite M_h -effect significant

Renormalization scheme dependence reduced from 1-Loop \rightarrow 2-Loop

by D.Stoeckinger

Final result for $\sin^2 \theta_{\text{lept}}^{\text{eff}}$ uses G_{μ} as input \rightarrow include corrections to M_{W}

Present result in terms of fitting formula:

sfermion masses 2

TSIL=Two-Loop Self-energy Integral Library

- Two-loop calculations for self-energies in the MSSM are necessary, possible
- I favor a Strategy based on:
 - DR' scheme (complementary to on-shell scheme results)
 - Reusable, generic calculations
 - Efficient computations of basis two-loop integrals
- 2-loop SUSYQCD corrections to squarks now known, typically $~\lesssim~1\%$
- 2-loop sfermion pole masses are implicitly known
- Some 3-loop calculations (e.g. for h⁰, maybe for gluino, squarks) will eventually be necessary to compete with measurement accuracy from a Linear Collider

by S.Martin

 $M_W \sin^2 \theta_{\text{eff}} \Delta \rho M_{h^0}$

Non Minimal Flavor Violation in MSSM

• Precision observables can

constrain MSSM parameter space already today, and even more for the increasing precision at future colliders

• MSSM with NMFV:

general 4 × 4 mixing in \tilde{t}/\tilde{c} and \tilde{b}/\tilde{s} sectors

 \Rightarrow Evaluation of M_W , sin² θ_{eff} , M_{h^0}

- Analytical results: for arbitrary mixing Numerical results: only for LL mixing, parametrized with λ ($(\delta_{LL})_{23}$)
- Large effects possible for M_W , $\sin^2 \theta_{eff}$:

 $\lambda \lesssim 0.2 \Rightarrow \delta M_W \lesssim 20 \text{ MeV}$ $\lambda \lesssim 0.2 \Rightarrow \delta \sin^2 \theta_{\text{eff}} \lesssim 10^{-4}$

 \to We have shown that the effects of scalar quark generation mixing enters essentially through $\Delta\rho$

- Moderate effects possible for M_{h^0} only for large λ
- FeynArts, FormCalc, LoopTools include: NMFV MSSM : 6 × 6 generalized squarks mixing matrices

by S.Penaranda

One-Loop

example: massive U(1) $M \implies \text{Born} * \left[1 + \frac{\alpha}{4\pi} \left(-\ln^2 \frac{s}{M^2} + 3\ln \frac{s}{M^2} - \frac{7}{2} + \frac{\pi^2}{3} \right) \right]$

 $\begin{array}{c|c} \text{magnitude} & \left(\frac{\alpha_w}{4\pi} = 3 \cdot 10^{-3}\right) \\ \\ & \frac{s}{M^2} & -\ln^2 \frac{s}{M^2} & +3\ln \frac{s}{M^2} & -\frac{7}{2} + \frac{\pi^2}{3} & \Sigma & *4\frac{\alpha_w}{4\pi} \\ \hline & \left(\frac{1000}{80}\right)^2 & -25.52 & +15.15 & -0.21 & -10.6 & -13\% \\ \hline & \left(\frac{2000}{80}\right)^2 & -41.44 & +19.31 & -0.21 & -22.3 & -27\% \end{array}$

(four-fermion cross section \Rightarrow factor 4)

by J.Kuehn

Massive SU(2) form factor in 2-loop approximation: result

$$\alpha^{2}F_{2} = \left(\frac{\alpha}{4\pi}\right)^{2} \left[\left. + \frac{9}{32} \ln^{4}\left(\frac{Q^{2}}{M^{2}}\right) - \frac{19}{48} \ln^{3}\left(\frac{Q^{2}}{M^{2}}\right) - \left(-\frac{7}{8}\pi^{2} + \frac{463}{48}\right) \ln^{2}\left(\frac{Q^{2}}{M^{2}}\right) \right]$$

$$N^{3}LL \text{ approximation} \qquad M_{\text{Higgs}} = M \qquad + \left(\frac{39}{2}\frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4}\frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right) \ln\left(\frac{Q^{2}}{M^{2}}\right)$$

N³LL and N⁴LL (partly) available for form factor

special role of massless bosons (γ and g) \rightarrow factorization of IR singularities

important issue for LC

Heavy Quark Fragmentation function

- We have calculated all components of the initial condition for the perturbative fragmentation function at order α_s^2 (NNLO), thus extending the PFF formalism to NNLL level.
- We followed a process independent approach for the computation of Dⁱⁿⁱ that exploits the universal behavior of the collinear radiation.
- To evaluate the two-loop integrals we apply powerful techniques for multi-loop calculations: IBP, reduction to MI's and their solving.
- I discussed the general properties of our result as well as the checks with partial results existing in the literature.
- I discussed some of the many possible applications of our result, like:
- Fixed order spectra for heavy particles from massless results,
- Resummations of quasi-collinear logs with NNLL accuracy and accurate extraction of non-perturbative fragmentation function from data.

by A. Mitov

New FormCalc

What is FormCalc?

by T.Hahn

New method from twister space

- Much progress in computational techniques gauge theories in last year or so is attributable (directly or indirectly) to development of twistor string theory
- So far, practical spinoffs mostly for trees, and for loops in supersymmetric theories
- However, loop-level versions of BCF recursion relations look promising
- Try to determine polynomial terms in non-SUSY (QCD) loop amplitudes this way (unitarity for branch-cut terms)
- Expect much more progress along these lines in future by L.Dixon

A 6-gluon example

220 Feynman diagrams for gggggg

Helicity + color + MHV (--+++) results + symmetries \Rightarrow only $A_6(1^+, 2^+, 3^+, 4^-, 5^-, 6^-)$, $A_6(1^+, 2^+, 3^-, 4^+, 5^-, 6^-)$

3 BCF diagrams

The one $A_6(1^+, 2^+, 3^+, 4^-, 5^-, 6^-)$ diagram

Last comments

- Higher order calculation required for ILC is steadily in progress including the full EW oneloop $e^+e^- \rightarrow v_{\tau}\tau^+\mu^-\overline{v}_{\mu}, u\overline{d}\mu^-\overline{v}_{\mu}, u\overline{d}s\overline{c}$
- Higgs at ILC : O (α) calculation is ready for most of processes.
- Two-loop in EW/MSSM/QCD/QCD-EW available for a class of physical observables.
- High-precision sometimes requires large scale computation → Importance of the development of tools for HEP.