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COSMOLOGY NOW

We are living through a revolution in our 
understanding of the Universe on the largest 

scales

For the first time in history, we have a complete 
picture of the Universe
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WHAT IS THE UNIVERSE MADE OF?

• Remarkable agreement

Dark Matter: 23% ± 4%
Dark Energy: 73% ± 4%
[Baryons: 4% ± 0.4%
Neutrinos: ~0.5%]

• Remarkable precision (~10%)

• Remarkable results
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Historical Precedent
In 200 B.C., Eratosthenes measured the size of the Earth

• Remarkable precision (~10%)

• Remarkable result
• But just the first step in centuries of exploration

Syene

Alexandria
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OUTSTANDING QUESTIONS

• Dark Matter: What is it? How is it distributed?

• Dark Energy: What is it?  Why not ΩΛ ~ 10120?  
Why not ΩΛ = 0?  Does it evolve?  

• Baryons: Why not ΩB ≈ 0? 

• UHE Cosmic Rays: What are they?  Where do 
they come from?

…

What tools do we need to address these?
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PARTICLE PHYSICS AT THE ENERGY FRONTIER
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ALCPG COSMOLOGY SUBGROUP
• Goals (Brau, Oreglia): 

– Identify cosmological questions most likely to be addressed 
by the ILC

– Determine the role cosmology plays in highlighting specific 
scenarios for new physics at the ILC

– Identify what insights the ILC can provide beyond those 
gained with other experiments and observatories

• Editors: Marco Battaglia, Jonathan Feng*, Norman 
Graf, Michael Peskin, Mark Trodden*

*co-conveners

• 30-50 contributors, international participation
Preliminary results presented here
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CONTRIBUTORS
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DARK MATTER

• Requirements: cold, non-baryonic, gravitationally 
interacting

• Candidates: primodial black holes, axions, warm gravitinos, 
neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, 
superWIMPs, self-interacting particles, self-annihilating 
particles, fuzzy dark matter,…

• Masses and interaction strengths span many, many orders 
of magnitude
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THERMAL RELICS

(1) Initially, DM is in   
thermal equilibrium: 

χχ ↔ f f

(2) Universe cools:
N = NEQ ~ e−m/T

(3) χs “freeze out”:
N ~ const

(1)

(2)

(3)

ΩDM ~ 0.1 (σweak / σA) – just right for new weak scale particles!
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STABILITY

• This assumes the new weak-scale particle is stable

• Problems (p decay, extra particles, large EW corrections) 
↕

Discrete symmetry
↕

Stability

• In many theories, dark matter is easier to explain than no 
dark matter
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• Supersymmetry
– Superpartners
– R-parity
– Neutralino χ with significant ΩDM                                                    Goldberg (1983)

• Universal Extra Dimensions
– Kaluza-Klein partners
– KK-parity                                                  Appelquist, Cheng, Dobrescu (2000) 

– Lightest KK particle with significant ΩDM                             Servant, Tait (2002)  
Cheng, Feng, Matchev (2002)

• Branes
– Brane fluctuations
– Brane-parity
– Branons with significant ΩDM                              Cembranos, Dobado, Maroto (2003)

EXAMPLES
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The Approach:

• Choose a concrete example: neutralinos

• Choose a simple model framework that encompasses 
many qualitatively different behaviors: mSUGRA

QUANTITATIVE ANALYSIS OF DM

λ1

λ3, …, λ105

λ2 m
SUG

RA

MSSM

• Relax model-dependent 
assumptions and determine 
parameters

• Identify cosmological, 
astroparticle implications
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Neutralino DM in mSUGRA

Cosmology excludes 
much of parameter 
space (Ωχ too big)

Cosmology focuses 
attention on particular 
regions (Ωχ just right)

Choose 4 representative points for detailed study
Baer et al., ISAJET     Gondolo et al., DARKSUSY     Belanger et al., MICROMEGA
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BULK REGION LCC1 (SPS1a)
m0, M1/2, A0, tanβ =  100, 250, -100, 10  [ µ>0, m3/2>mLSP ]

• Correct relic density obtained if χ annihilate efficiently 
through light sfermions:

• Motivates SUSY with
light  χ, l ̃

Allanach et al. (2002)
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PRECISION MASSES
• Kinematic endpoints, threshold 

scans:
– variable beam energy
– e- beam polarization
– e-e- option

Weiglein, Martyn et al. (2004)
Feng, Peskin (2001)

Freitas, Manteuffel, Zerwas (2003)

e-e-

e+e-

• Must also verify insensitivity to all other parameters
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BULK RESULTS

• Scan over ~20 most 
relevant parameters

• Weight each point 
by Gaussian
distribution for each 
observable

• ~50K scan points
Battaglia (2005)

• (Preliminary) result: ∆Ωχ/Ωχ = 2.2% (∆Ωχh2 = 0.0026)
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RELIC DENSITY DETERMINATIONS

WMAP
(current)

Planck
(~2010)

LHC (“best case scenario”)ILC

LCC1

Parts per mille agreement for Ωχ discovery of dark matter
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FOCUS POINT REGION LCC2
m0, M1/2, A0, tanβ =  3280, 300, 0, 10 [ µ>0, m3/2>mLSP ]

• Correct relic density obtained if χ is mixed, has significant 
Higgsino component to enhance

• Motivates SUSY with
light  neutralinos, 
charginos

Feng, Matchev, Wilczek (2000)

Gauginos
Higgsinos
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FOCUS POINT RESULTS
• Ωχ sensitive to Higgsino mixing, chargino-

neutralino degeneracy
Alexander, Birkedal, Ecklund, Matchev et al. (2005)

B
attaglia

(2005)

(Preliminary) result: ∆Ωχ/Ωχ = 2.4% (∆Ωχh2 = 0.0029)



19 Mar 05 Feng 21

RELIC DENSITY DETERMINATIONS

WMAP
(current)

Planck
(~2010)ILC

LCC2

Parts per mille agreement for Ωχ discovery of dark matter



19 Mar 05 Feng 22

CO-ANNIHILATION REGION LCC3

m0, M1/2, A0, tanβ =  210, 360, 0, 40  [ µ>0, m3/2>mLSP ]

• If other superpartners are nearly degenerate with the χ LSP, 
they can help it annihilate

Griest, Seckel (1986)

• Requires similar e–m/T for χ and τ̃, so (roughly)
∆m < T ~ mχ/25

• Motivates SUSY with  τ̃ → τχ with ∆m ~ few GeV

χ τ

τ̃ γ

τ
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CO-ANNIHILATION RESULTS
Dutta, Kamon; Nauenberg et al.; Battaglia (2005)

(Preliminary) result: ∆Ωχ/Ωχ = 7.0% (∆Ωχh2 = 0.0084)
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RELIC DENSITY DETERMINATIONS

LCC3WMAP
(current)

Planck
(~2010)ILC

% level agreement for Ωχ discovery of dark matter
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IMPLICATIONS FOR 
ASTROPARTICLE PHYSICS

χ

χ

f

 f
Annihilation

Correct relic density Efficient annihilation then 
Efficient scattering now
Efficient annihilation now

χ χ

f


f

Scattering

Crossing 

symmetry
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Direct Detection
DAMA Signal and

Others’ Exclusion Contours

CDMS (2004)

Gaitskell (2001)
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ILC IMPLICATIONS
LCC2 m < 1 GeV, ∆σ/σ < 10%

Current Sensitivity

Near Future

Future

Theoretical Predictions

B
aer, B

alazs, B
elyaev, O

’Farrill(2003)

Comparison tells us about local dark matter density and velocity profiles
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INDIRECT DETECTION

Dark Matter Madlibs!

Dark matter annihilates in ________________ to  
a place

__________ , which are detected by _____________ .
particles an experiment 
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Dark Matter annihilates in center of the Sun   to   
a place

neutrinos , which are detected by AMANDA, IceCube .
some particles an experiment 

A
M

A
N

D
A

 in the A
ntarctic Ice

• Comparison with 
colliders constrains dark 
matter density in the 
Sun, capture rates
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Dark Matter annihilates in the galactic center   to  
a place

photons   , which are detected by GLAST, HESS, … .
some particles an experiment 

Comparison with colliders constrains DM density at 
the center of the galaxy

HESS
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Dark Matter annihilates in the halo           to  
a place

positrons  , which are detected by AMS on the ISS   .
some particles an experiment 

• Comparison with 
colliders constrains 
dark matter density 
profiles in the halo

ASTROPHYSICS VIEWPOINT: 
ILC ELIMINATES PARTICLE PHYSICS UNCERTAINTIES,

ALLOWS ONE TO DO REAL ASTROPHYSICS
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ALTERNATIVE DARK MATTER 

• All of these signals rely on DM having 
electroweak interactions.  Is this required?

• No – the only required DM interactions are 
gravitational (much weaker than electroweak).

• But the relic density argument strongly prefers 
weak interactions.

Is there an exception to this rule?
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SUPERWIMPS
• Consider SUSY again:

Gravitons gravitinos G̃
• What if the G̃ is the lightest 

superpartner?

• A month passes…then all WIMPs
decay to gravitinos – a completely 
natural scenario with long decay 
times

Gravitinos naturally inherit the right density, but they interact 
only gravitationally – they are “superWIMPs”

WIMP≈
G̃

MPl
2/MW

3 ~ month

Feng, Rajaraman, Takayama (2003)
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WORST CASE SCENARIO?
Looks bad – dark matter couplings suppressed by 10-16

Slepton
trap

Reservoir

But, cosmology decaying 
WIMPs are sleptons: heavy, 
charged, live ~ a month – can 
be trapped, then moved to a 
quiet environment to observe 
decays.

How many can be trapped?

Hamaguchi, Kuno, Nakaya, Nojiri (2004)
Feng, Smith (2004)        
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Large Hadron Collider

M1/2 = 600 GeV
m l̃ = 219 GeV L = 100 fb-1/yr

If squarks, gluinos light, many sleptons, but most are fast:
O(1)% are caught in 10 kton trap
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International Linear Collider

L = 300 fb-1/yr

Can tune beam energy to produce slow sleptons:
75% are caught in 10 kton trap

Shufang Su, LCWS05
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IMPLICATIONS FROM SLEPTON DECAYS

• Measurement of Γ and El mG ̃ and M*

– Probes gravity in a particle physics experiment!
– Measurement of GNewton on fundamental particle scale
– Precise test of supergravity: gravitino is graviton partner
– BBN, CMB in the lab

– Determines ΩG ̃: SuperWIMP contribution to dark matter
– Determines F : supersymmetry breaking scale, contribution of 

SUSY breaking to dark energy, cosmological constant
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DARK ENERGY
• Quantum mechanics:

½ ħ ω, ω2 = k 2 + m 2

• Quantum field theory:

∫E d3k ( ½ ħ ω) ~ E 4, 

where E is the energy scale where the theory breaks down

• All fields contribute to Λ.  We expect 
(MPlanck)4 ~ 10120 ρΛ (MSUSY)4 ~ 1090 ρΛ
(MGUT)4 ~ 10108 ρΛ (Mweak)4 ~ 1060 ρΛ
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ONE APPROACH

• Small numbers ↔ broken symmetry

ρΛ ~ MPl
4

ρΛ ~ mν
4,

(MW
2/MPl)4,...

A miracle
occurs here

ρΛ = 0
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ANOTHER APPROACH

ρΛ ~ MPl
4 Many, densely spaced

vacua (string landscape, 
many universes, etc.)

Anthropic principle:
-1 < ΩΛ < 100

Weinberg (1989)
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• Two very different approaches.  There are others, but 
none is compelling.

• Ways forward:
1) Discover a fundamental scalar particle (Higgs would be nice)
2) (Mweak)4 ~ 1060 ρΛ : map out the EW potential
3) (MSUSY)4 ~ 1090 ρΛ: understand SUSY breaking (see above)
4) (MGUT)4 ~ 10108 ρΛ : extrapolate to GUT scale
5) (MPlanck)4 ~ 10120 ρΛ : …

• ILC will be an essential tool for at least 2, 3, and 4.
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BARYOGENESIS

• Requires 
– B violation
– CP violation
– Departure from thermal equilibrium

• All possible at the electroweak scale with new 
physics

• For SUSY, requires precise determination of Higgs 
and top squark parameters, and CP violating phases
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Carena, Quiros, Wagner (2001)Berggren, Keranen, Nowak, Sopczak (1999)

• ILC will quickly establish whether EW Baryogenesis is possible

• CP violation: Bartl et al., Zerwas et al., Barger et al., and others

• LCC5: Graf, Strube et al.
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CONCLUSIONS

• Cosmology now provides sharp problems that 
are among the most outstanding in basic 
science today.

• They require new particle physics, cannot be 
solved by cosmological tools alone.

• In many cases, the ILC provides an essential 
tool for discovering the answers.



Age of Discovery
1500s

Us
Now

Eratosthenes
200 B.C.

AN EQUALLY EXCITING AGE OF DISCOVERY AHEAD
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