Physics Impact of Detector Performance

Tim Barklow SLAC March 18, 2005

1

Outline

- General Considerations
 - Vertex Detector
 - Tracker
 - Calorimeter
 - Far forward detector
- Examples of parametric physics studies
 - Calorimeter ΔE_{jet}
 - Tracker Δp_t
- Summary

Vertex Detector

- Classic application of b,c tagging to Higgs branching ratios.
- But there's more:
 - vertex charge
 - top, W helicity
 - $q\overline{q}$ asymmetries
 - $-\tau$ tagging
 - stau analyses
 - Higgs tau BR
 - b jets with several v's

*Talk by Chris Damerell 21Mar2005

Vertex Detector – tau tagging example

 $e^+e^- \rightarrow v\overline{v}t\overline{t}$ is an important strong symmetry breaking signal (WW $\rightarrow t\overline{t}$).

The large $e^+e^- \rightarrow e^+e^-t\overline{t}$ background can be mostly supressed by vetoing the forward e^{\pm} and requiring unbalanced p_t . But there remains a seemingly irreducible background from $e^+e^- \rightarrow e^+e^-t\overline{t} \rightarrow e^+e^-b\overline{b}W^+W^-$ where one of the *b* quarks undergoes the decay

 $b \to c\tau^- \overline{\nu_\tau} \to c\rho^- \nu_\tau \overline{\nu_\tau}$, $ce^- \overline{\nu_e} \nu_\tau \overline{\nu_\tau}$, etc. $\Rightarrow b \to \tau$ decays have at least 2 ν 's

Tau tagging could reduce this background (and help *b* jet energy flow analysis in general).

Tracker

- Momentum resolution set by recoil mass analysis of $ZH \rightarrow l^+l^-X$
- K_s^0 , Λ^0 reconstruction and long-lived new particles (GMSB SUSY)
- Multiple scattering effects
- Forward tracking
- Measurement of Ecm, differential luminosity and polarization using physics events

Calorimeter

• Separate hadronically decaying W's from Z's in reactions where kinematic fits won't work:

 $e^{+}e^{-} \rightarrow \nu\nu W^{+}W^{-}, \nu\nu ZZ$ $e^{+}e^{-} \rightarrow \chi_{1}^{+}\chi_{1}^{-} \rightarrow \chi_{1}^{0}\chi_{1}^{0}W^{+}W^{-}$ $e^{+}e^{-} \rightarrow \chi_{2}^{0}\chi_{2}^{0} \rightarrow \chi_{1}^{0}\chi_{1}^{0}ZZ$

• Help solve combinatoric problem in reactions with 4 or more jets $e^+e^- \rightarrow ZH \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}lv$ $e^+e^- \rightarrow ZHH \rightarrow q\bar{q}b\bar{b}b\bar{b}$

Far Forward Detector

- Electron veto down to 3.2 mrad in presence of very large e^+e^- pair background
- Useful in general to suppress $\gamma\gamma \rightarrow ff$ backround. Takes on added importance given that the SUSY parameter space consistent with Dark Matter density includes region with nearly degenerate $\tilde{\chi}_1^0$, $\tilde{\tau}$
- Crossing angle implications.

Far Forward Detector

Rel. stau mass error increases from 0.14% to 0.22% with 20 mrad cross angle

parameter α of the jet resolution

 $e^+e^- \rightarrow ZH \rightarrow qqbb$

Simdet Fast MC with this parameterization of pt resolution in place of Simdet's emulation of LDC:

Branching Ratio of H \rightarrow CC

50

Talk by Haijun Yang

in TRK session 20Mar2005

*

ILC500-Z(II)H(cc)-120GeV ILC500-Z(II)H(cc)-140GeV 48 75 SDMAR01 SDMAR01 46 ∆Br/Br of ZH→IICC (%) C (%) LDMAR01 LDMAR01 44 70 ∆Br/Br of ZH→IIC 42 40 65 38 60 36 34 55 32 30 50 10 -1 10⁻¹ Scale factor of $\Delta(1/P_{\star})$ Scale factor of $\Delta(1/P_{.})$ 0.3 ILC500-SDMAR01-Z(II)H(cc)-120GeV $Purity = N_{signal} / (N_{signal} + N_{background})$ 0.29 mass range 119-122 GeV 0.28 mass range 119-124 GeV 0.27 mass sange 119-129 GeV 0.26 9-139 GeV mass rar 0.25 0.24 0.23 0.22 0.21 0.2 10 -1 Scale factor of $\Delta(1/P_{\star})$

80

→ △Br/Br ~ 39% (120GeV), 64% (140GeV) for Z→l+l-, 1000 fb⁻¹

Center of Mass Energy Error Requirements

- Top mass:
- Giga-Z program:

200 ppm (35 Mev) • Higgs mass: 200 ppm (60 MeV for 120 GeV Higgs) 50 ppm

Reconstructed E_{cm} using $Z\gamma$ events and measured angles. $Z \rightarrow \mu^+ \mu^-$

The momentum resolution is set by Higgs recoil mass measurement in $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-H$

In the reaction $e^+e^- \rightarrow Z\gamma \rightarrow \mu^+\mu^-\gamma$ we know the mass of the photon. Why not invert the problem and use the excellent momentum resolution to solve for \sqrt{s} instead of the mass of the system opposite $\mu^+\mu^-$? Reconstructed $E_{cm} \& M_Z$ using $Z\gamma$ events and measured momenta & angles. $Z \rightarrow \mu^+ \mu^-$

Reconstructed $E_{cm} \& M_Z$ using $Z\gamma$ events and measured momenta & angles. $Z \rightarrow \mu^+ \mu^-$

Trk mom scale factor = 0.996Trk mom scale factor = 1.004E_{cm} (GeV)

 $E_{cm} = 350 \text{ GeV}$ Lumi = 100 fb⁻¹ $E_{Z\nu}$ = Measured E_{cm} assuming Z boson recoil against single photon E = Measured E_{cm} using full energy $e^+e^- \rightarrow \mu^+\mu^ \Delta E_{cm}(GeV) \quad \Delta E_{cm}(GeV) \quad \Delta E_{cm}(GeV) \quad \frac{\Delta E_{cm}}{E_{cm}}(ppm)$ bmeasured var a sys(E scale) total stat total $E_{Z\nu}$ ang only .0473 0 .0473 135 $E_{Z_{\gamma}} |\vec{p}| \& ang \quad 2 \times 10^{-5} \quad 1 \times 10^{-3}$.0085 .0206 .0223 64 $E_{Z_{\gamma}} |\vec{p}| \& ang \quad 2 \times 10^{-5} \quad .5 \times 10^{-3}$.0054 .0124 .0135 39 $E_{Z\gamma}$ | \vec{p} | & ang 34×10⁻⁵ 4×10⁻³ .0375 .0313 .0488 139 $E_{\mu\mu}$ | \vec{p} | & ang 2×10^{-5} 1×10^{-3} .0056 .0124 .0136 39

Simdet Fast MC with this parameterization of pt resolution in place of Simdet's emulation of LDC:

Summary

- Current detector designs appear well matched to envisioned physics program
- Choices will have to be made as realitities of detector engineering and cost are confronted – physics benchmark studies will play a crucial role. The examples of parametric studies shown here are just the beginning.