# ILC Accelerator Technical Issues

Nick Walker LCWS 2005

Stanford University 18.3.2005

## Already have two ILC Possibilities



TESLA TDR 500 GeV (800 GeV)

33km

47 km

US Options Study 500 GeV (1 TeV)



# ILC Design Issues

After ITRP decision: Back to Basics!



**Energy Reach** 

$$E_{cm} = 2b_{fill}L_{linac}G_{RF}$$

Luminosity

$$L \propto \frac{\eta_{RF} P_{AC}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\gamma \varepsilon_{y}}}$$

## **TESLA TDR Parameters**

peak luminosity



- 3×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> peak achievable
- Possible due to very high beam-beam disruption  $(D_y)$
- Well into kink-instability regime (unstable)
- Little head room to play with

# TESLA TDR Parameters

peak luminosity



#### **ILC Parameters**



space

- Define baseline at relaxed goal of 2×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - consistent with WWS 500fb<sup>-1</sup> in first 4 years
- Now have several possible parameter sets (parameter 'plane')
- Operational flexibility
- Sub-system experts to evaluate trade-offs between relevant parameters

## **ILC Parameters**

#### Suggested ILC Beam Parameter Range

by Tor Raubenheimer (SLAC)

available from:

http://www-project.slac.stanford.edu/ilc/

http://ilc.desy.de

http://...

#### parameters discussion forum:

http://www-project.slac.stanford.edu/ilc/discussion/Default.htm

This document intended to provoke <u>your</u> feedback and comment!

## Parameter Plane

|                                             |                   | nom      | low N    | lrg Y  | low P    |
|---------------------------------------------|-------------------|----------|----------|--------|----------|
| N                                           | ×10 <sup>10</sup> | 2        | 1        | 2      | 2        |
| $n_b$                                       |                   | 2820     | 5640     | 2820   | 1330     |
| $\mathcal{E}_{\chi,y}$                      | μm, nm            | 9.6, 40  | 10,30    | 12,80  | 10,35    |
| $\beta_{x,y}$                               | cm, mm            | 2, 0.4   | 1.2, 0.2 | 1, 0.4 | 1, 0.2   |
| $\sigma_{x,y}$                              | nm                | 543, 5.7 | 495, 3.5 | 495, 8 | 452, 3.8 |
| $D_{\rm y}$                                 |                   | 18.5     | 10       | 28.6   | 27       |
| $\delta_{\!BS}$                             | %                 | 2.2      | 1.8      | 2.4    | 5.7      |
| $\sigma_{\!\scriptscriptstyle \mathcal{Z}}$ | μm                | 300      | 150      | 500    | 200      |
| $P_{beam}$                                  | MW                | 11       | 11       | 11     | 5.3      |
| L                                           | ×10 <sup>34</sup> | 2        | 2        | 2      | 2        |

Range of parameters design to achieve  $2 \times 10^{34}$ 

Pushing the Luminosity Envelope

|                                             |                   | nom      | low N    | lrg Y  | low P    | High L   |  |
|---------------------------------------------|-------------------|----------|----------|--------|----------|----------|--|
| N                                           | $\times 10^{10}$  | 2        | 1        | 2      | 2        | 2        |  |
| $n_b$                                       |                   | 2820     | 5640     | 2820   | 1330     | 2820     |  |
| $\epsilon_{x,y}$                            | μm, nm            | 9.6, 40  | 10,30    | 12,80  | 10,35    | 10,30    |  |
| $\beta_{x,y}$                               | cm, mm            | 2, 0.4   | 1.2, 0.2 | 1, 0.4 | 1, 0.2   | 1, 0.2   |  |
| $\sigma_{x,y}$                              | nm                | 543, 5.7 | 495, 3.5 | 495, 8 | 452, 3.8 | 452, 3.5 |  |
| $D_{\rm y}$                                 |                   | 18.5     | 10       | 28.6   | 27       | 22       |  |
| $\delta_{\!\scriptscriptstyle BS}$          | %                 | 2.2      | 1.8      | 2.4    | 5.7      | 7        |  |
| $\sigma_{\!\scriptscriptstyle \mathcal{Z}}$ | μm                | 300      | 150      | 500    | 200      | 150      |  |
| $P_{beam}$                                  | MW                | 11       | 11       | 11     | 5.3      | 11       |  |
| L                                           | ×10 <sup>34</sup> | 2        | 2        | 2      | 2        | 4.9!     |  |

## Towards the ILC Baseline Design



Design

Decisions to be Made!

## Main Linac: The Cost Driver

- Biggest single cost item
- 10 years of R&D by the TESLA Collaboration has produced a mature technology
  - But still lots to do...

## Main Linac: The Cost Driver

- Primary focus of future R&D should be
  - successful tech. transfer to industry
  - cost reduction through industrialisation
  - need extensive effort to achieve <u>high</u> reliability!!!
- Euro XFEL project is already doing much of this within Europe
  - Asia and US should follow
- One important question:"What should the design gradient be?"

## Gradient



# Gradient versus Length

- Higher gradient gives shorter linac
  - cheaper tunnel / civil engineering
  - less cavities
  - (but still need same # klystrons)

Higher gradient needs more refrigeration



- 'cryo-power' per unit length scales as  $G^2/Q_0$
- cost of cryoplants goes up!

# Simple Cost Scaling



general consensus that 35MV/m is close to optimum

However Japanese are still pushing for 40-45MV/m

30 MV/m would give safety margin

C. Adolphsen (SLAC)

Gradient MV/m

## Gradient



Electropolishing the way to (reproducible) high gradients

# TESLA Cavity Design

~1m



9-cell 1.3GHz Niobium Cavity

Reference design: has not been modified in 10 years

## Possible Minor Enhancement

#### Low Loss Design

Small modification to cavity shape reduces peak B field.

Increase operation margin.

Increases peak E field ⊗ (field emission)

Mechanical stability ?? (Lorentz force detuning)



KEK currently producing prototypes

## More Radical Possibilities



#### 2×8 cell Super-structure

More radical concepts *potentially* offer greater benefits.

But requires major new infrastructure to develop.

#### Re-entrant



single-cell achieved 45.7 MV/m  $Q_0 \sim 10^{10}$  (Cornell)

# Cryomodule Variants



TESLA CM already 3<sup>rd</sup> generation

Main emphasis is on

- industrialisation
- reliability
- cost optimisation

TTF ILC

# cavities 8 12? spacing  $3\lambda/2$   $\lambda/2$ ? quad loc. end centre?



**EURO XFEL** 

# Cavity Auxiliaries

auxiliaries

fast piezo-tuner

mechanical tuner

high-power coupler







industrialisation – cost – reliability

# RF Power source & Distribution

RF Power source & Distribution

klystron design

modulator design

RF distribution concept

# Example: Klystron Development

**THALUS** 



**CPI** 



10MW 1.4ms Multibeam Klystrons ~650 for 500 GeV +650 for 1 TeV upgrade **TOSHIBA** 



Other ideas being considered (e.g. sheet beam klystrons)

#### Global SCRF Test Facilities

- TESLA Test Facility (TTF)
   currently unique in the world
   VUV-FEL user facility
   test-bed for both XFEL & ILC
- US proposed SMTF
   Cornell, JLab, ANL, FNAL, LBNL, LANL, MIT,
   MSU, SNS, UPenn, NIU, BNL, SLAC
   currently requesting funding
   TF for ILC, Proton Driver (and more)
- STF @ KEK aggressive schedule to produce high-gradient (~45MV/m) cavities / cryomodules

Others (UK proposals?)

All facilities will be discussed at TESLA Collaboration Meeting 30/3-1/4 at DESY

# Towards the ILC Baseline Design





ILC Baseline Design

Not cost drivers

But can be *L* performance bottlenecks

Many challenges!

More Decisions to be Made!

# Damping Rings



#### DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17 km lattice (arcs 1 km each, straights 15 km total).

Bunches spaced by 20 ns, injected and extracted individually.

Positron damping ring requires 440 m of wiggler to achieve damping time of 27 ms.



Schematic of Dogbone Damping Ring from TESLA TDR

#### Strengths:

- Relatively small amount of extra tunnel required.
- Large circumference reduces average current, and helps mitigate some instabilities.
- Flexibility in modes of operation (e.g. could double number of bunches)

#### Weaknesses:

- Large space-charge tune shift needs to be corrected using coupling-bumps.
- Sensitive to stray magnetic fields.

#### DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17

DR Design Approaches: Example #2, the FNAL 6 km lattice

Bunches s

Positron o

5 GeV, 6 km lattice (six-fold symmetry).

Injection/extraction scheme uses 6 ns rise-time, 60 ns fall-time kicker.

Lattice documented in FERMILAB-TM-2272-AD-TD

http://www.hep.uiuc.edu/home/g-gollin/linear\_collider/Fermilab\_damping\_ring\_report.pdf







#### Strengths

- Rela
- Larg
- Flexi

#### Weakness

- Larg
- Sens

#### Strengths:

- Relatively small circumference reduces space-charge effects.
- Reduced amount of wiggler needed to achieve required damping rate.
- Injection/extraction scheme allows use of slow fall-time kicker.

#### Weaknesses:

- Higher average current makes electron-cloud and ion effects more difficult.

#### DR Design Approaches: Example #1, the TESLA TDR lattice

DR Design Approaches: Example #2, the FNAL 6 km lattice

Bunches s

Positron o

Strengths

- Rela
- Larg
- Flexi

Weakness

- Larg
- Sens

5 GeV, 6 k

Injection/e

Lattice dod http://www.hep.

> 250 -250

500

Strengths:

- Relati
- Redu
- Inject

Weaknesse

- Highe

DR Design Approaches: Example #3, the KEK 3 km lattice

5 GeV, 3.2 km lattice (racetrack design).





Lattice layout and optical functions in KEK 3 km damping ring.

S. Kuroda and J. Urakawa (KEK)

## ATF @ KEK



- emittance tuning
- wiggler dynamics
- collective effects
- multi-bunch
- fast kicker technology
- diagnostics test bed

E 1.28 GeV

N 2×10<sup>10</sup> e/bunch

bunches 1-20

ε x/y 1.5nm / 4pm

20 weeks/year 2 weeks/month



#### **BDS** Issues



very active (international) group!

## **BDS Strawman Model**



Discussion on angles between the Linacs:

- Multi-TeV upgradeability argument is favoured by many
- Small crossing angle is disfavoured by some

## ATF-2: FFTB @ ATF



International Collaboration (ongoing discussions)

Begin construction 8.2006

Begin operation 1.2007

- Test of local correction FF optics
- 35nm IP beam size
- Test facility for stabilisation techniques (beam-based feedback and mechanical: goal 2nm at IP)
- Long term stability studies

• ...

#### Positron Source

- Large amount of charge to produce
- Three concepts:
  - undulator-based (TESLA TDR baseline)
  - 'conventional'
  - laser Compton based

Hotly debated subject.

# Parameters of existing and planed positron sources

|                            | rep rate | # of<br>bunches<br>per pulse | # of<br>positrons<br>per bunch | # of positrons per pulse |
|----------------------------|----------|------------------------------|--------------------------------|--------------------------|
| TESLA TDR                  | 5 Hz     | 2820                         | 2 · 10 <sup>10</sup>           | 5.6 · 10 <sup>13</sup>   |
| NLC                        | 120 Hz   | 192                          | 0.75 · 10 <sup>10</sup>        | 1.4 · 10 <sup>12</sup>   |
| SLC                        | 120 Hz   | 1                            | 5 · 10 <sup>10</sup>           | 5 · 10¹º                 |
| DESY<br>positron<br>source | 50 Hz    | 1                            | 1.5 · 10 <sup>9</sup>          | 1.5 · 10 <sup>9</sup>    |

## **Undulator-Based**



6D e+ emittance small enough that (probably) no pre-DR needed [shifts emphasis/challenge to DR acceptance]

Lower *n* production rates (radiation damage)

Need high-energy e- to make e+ (coupled operation) ⊗ Makes commissioning more difficult

Polarised positrons (almost) for free ©

#### Conventional

- Extrapolation of existing methods
  - SLC e+ source
- Extremely challenging for ILC pulse structure
  - feasibility still a question
- Requires thick target(s)
  - High(er) n production radiation damage a primary issue
  - Large e+ emittance probably means pre-DR needed.
- Completely de-couples e+ from e- machine ©
  - greater flexibility ✓
  - operability ✓
  - commissioning ✓

# Compton Source (KEK)







# Reliability / Operability



A major issue for ILC – needs much more work Current state-of-the-art is Tom Himel study for USCWO

# Summary

- The ILC is ambitious project which pushed the envelope in every subsystem:
  - Main SCRF linac cost driver \$\$\$
  - sources
  - damping rings
  - beam delivery

L performance bottleneck

# Summary

- The ILC is ambitious project which pushed the envelope in every subsystem:
  - Main SCRF linac cost driver \$\$\$

- sources
- damping rings
- beam delivery

L performance bottleneck

- Still many accelerator physics issues to deal with, but reliability and cost issues are probably the greater challenges
- Probably in excess of 3000 man-years already invested in design work.
  - but still plenty for you to do if you want to join us @