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Already have two ILLC Poessibilities
A B 2

bnd Bunch Congpre=-or

>

{ TESLA TDR
500 GeV (800 GeV)

33km
47 km

US Options Study
500 GeV (1 TeV) v

Nick Walker LCWS 2005 — Stanford University 18.3.2005



ILC Design Issues

After ITRP decision: Back to Basics!
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TESLA TDR Parameters

peak luminosity

A 331034

~

e 3x1034 cm—=s-1 peak

ik achievable

e Possible due to very high
beam-beam disruption
(D))

e Well into kink-instability
regime (unstable)

e Little head room to play
with

parameter
space
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TESLA TDR Parameters

peak luminosity

A 331034

~

parameter
space
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ILC Parameters

e Define baseline at
relaxed goal of
2x1034 cm-2s1

34 e consistent with WWS

\Z‘X 10 500fb-1 in first 4 years

S~—o_ e Now have several

‘ possible parameter sets
(parameter ‘plane’)

e Operational flexibility

e Sub-system experts to
evaluate trade-offs
between relevant
parameters

peak luminosity

parameter
space
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ILC Parameters

Suggested ILC Beam Parameter Range
by Tor Raubenheimer (SLAC)

available from:
http://www-project.slac.stanford.edu/ilc/
http://ilc.desy.de

http://...

parameters discussion forum:
http://www-project.slac.stanford.edu/ilc/discussion/Default.htm

This document intended to provoke your feedback and
comment!
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Parameter Plane

nom low N Irg Y low P
N x10% 2 1 2 2
n, 2820 5640 | 2820 | 1330
Exy um,nm | 9.6,40 | 10,30 | 12,80 | 10,35
B cmmm| 2,04 (1.2,02(1,04| 1,0.2
XY
Gy y nm | 543, 5.7|495, 3.5|495, 8452, 3.8
Dy 18.5 10 28.6 21
Ogs %0 2.2 1.8 2.4 5.7
O. pm 300 150 500 200
Z
Pream MW 11 11 11 5.3
L <10 2 2 2 2

Nick Walker
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Range of
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design to achieve
2x1034



Pushing the Luminesity Envelope

Nick Walker
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nom low N Irg Y low P High L
\ x 1010 2 1 2 2 2
n, 2820 5640 | 2820 | 1330 2820
Exy um,nm | 9.6,40 | 10,30 | 12,80 | 10,35 | 10,30
ﬁx,v cmmm| 204 (12,02(1,04| 1,02 | 1,0.2
Oy nm 1543, 5.7]495, 3.5(495, 8452, 3.8 452, 3.5
Dy 18.5 10 28.6 21 22
588 % 2.2 1.8 2.4 5.7 I
o um 300 150 500 200 150
Pream MW 11 11 11 5.3
L x1034 2 2 2 2 ‘



Towards the ILC Baseline Design

ILC Baseline

Design

Delivery
System

Decisions to be Made!

Nick Walker LCWS 2005 — Stanford University 18.3.2005

10



Main Linac: The Cost Driver

= Biggest single cost item

s 10 years of R&D by the TESLA
Collaboration has produced a
mature technology

e But still lots to do...
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Main Linac: The Cost Driver

= Primary focus of future R&D should be
e successful tech. transfer to industry
e cost reduction through industrialisation
e need extensive effort to achieve high
reliability !!!
s Euro XFEL project is already doing much
of this within Europe
e Asia and US should follow

= One iImportant question:
“What should the design gradient be?”
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Gradient

30 MV/m - safe

35 MV/m - baseline

Gradient

>40 MV/m - ambitious

EURO XFEL: 28 MV/m

LCWS 2005 — Stanford University 18.3.2005
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Gradient versus Length

= Higher gradient gives shorter linac ©

e cheaper tunnel / civil engineering
e |ess cavities
e (but still need same # klystrons)

» Higher gradient needs more refrigeration ®

e ‘cryo-power’ per unit length scales as G?/Q,
e cost of cryoplants goes up!

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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ing

le Cost Scal

Simp

general
consensus that
However
Japanese are
still pushing
for 40-
45MV/m

30 MV/m
would give
safety margin
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Gradient MV/m

C. Adolphsen (SLAC)
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Gradient

After Standard etch Averags
Results from 28.9 +/- 1.1 MV/m

 KEK-DESY
| collaboration

|

|

After EP Average
35.6 +/-2.3 MV/m
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must reduce
spread (need
more statistics)
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Electropolishing the way to (reproducible) high gradients
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TESLA Cavity Design

9-cell 1.3GHz Niobium Cavity

Reference design: has not been modified in 10 years

LCWS 2005 — Stanford University 18.3.2005
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Possible Minor Enhancement

Low Loss Shape

Low Loss Design Baseline
TESLA shape

Small modification to
cavity shape reduces peak
B field.

Increase operation margin.

Increases peak E field ®
(field emission)

Mechanical stability ??

(Lorentz force detuning)
KEK currently producing prototypes

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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More Radical Possibilities

Example: 2x8-cells based on the RE-shape.
Re-entrant
SESSSSSS ASSSS88E Re-entrant
L L e

RE 2x8-cells; Contour of B field

2x8 cell Super-structure

More radical concepts potentially offer
greater benefits.

But requires major new infrastructure to
develop.

single-cell achieved
45.7 MV/m Q, —101°
(Cornell)

Nick Walker LCWS 2005 — Stanford University 18.3.2005 19



Cryomodule Variants

TTF ILC
# cavities 8 127
spacing 32 A2?
quad loc. end centre?

Coo - " /
—t -
5 7 - ;
i & E ™ iy, -

-

TESLA CM already
3'd generation

Main emphasis Is on

- Industrialisation
- reliability EURO XFEL

- cost optimisation

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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_auxiliaries J

Cavity Auxiliaries

' NFN-blade tuner

e ——

]l

TTF TYPE-III
HP Coupler

SACLAY tuner (type I11)

Nick Walker

Industrialisation — cost — reliability
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RF Power source &
Distribution

klystron design

ERFP : :
1 ower source % modulator design

h & Distribution

RF distribution concept

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Example: Klystron Development
THAL:JUS

10MW 1.4ms Multibeam Klystrons
~650 for 500 GeV
+650 for 1 TeV upgrade

Other ideas being considered (e.g. sheet beam klystrons)

Nick Walker LCWS 2005 — Stanford University 18.3.2005 23



Global SCRFE Test Facllities
h

= TESLA Test Facility (TTF)

currently unique in the world
VUV-FEL user facility
test-bed for both XFEL & ILC

s US proposed SMTF
Cornell, JLab, ANL, FNAL, LBNL, LANL, MIT,
MSU, SNS, UPenn, NIU, BNL, SLAC
currently requesting funding
TF for ILC, Proton Driver (and more)

s STF @ KEK

aggressive schedule to produce high-gradient
(—45MV/m) cavities / cryomodules

Others (UK proposals?)

Nick Walker LCWS 2005 — Stanford University 18.3.2005

J

‘

All facilities will
be discussed at
TESLA
Collaboration
Meeting
30/3-1/4 at
DESY
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Towards the ILC Baseline Design
— e =

—, ..._._‘ Damping Rings

ILC Baseline
Design

Not cost drivers

But can be L performance 2 Beamn
bottlenecks =< Delivery

Many challenges!

More Decisions to be Made!

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Damping Rings

Nick Walker

Damping RiNgs
B mictance Goals Jin

_ lattice design -
Dynamic Aperture wiggler )

electron cloud

Instabilities fast mn
(collective effects)

higher 1,

I{1cker Technnlngy T
smaller circumference

(faster kicker)

= Circumference

3 COST
bunch train compression

_ 300km — <20km

LCWS 2005 — Stanford University 18.3.2005
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DR Design Approaches: Example #1, the TESLA TDR lattice

5 GeV, 17 km lattice (arcs 1 km each, straights 15 km total).
Bunches spaced by 20 ns, injected and extracted individually.

Positron damping ring requires 440 m of wiggler to achieve damping time of 27 ms.

r
i,
2,
73
7
.

- a i
e lolP
- . RF wiggleN ~ straightsection  wiggler '\

.
._f-l

LINAC tunnel

Schematic of Dogbone Damping Ring from TESLA TDR

Strengths:
- Relatively small amount of extra tunnel required.
- Large circumference reduces average current, and helps mitigate some instabilities.
- Flexibility in modes of operation (e.g. could double number of bunches)

Weaknesses:
- Large space-charge tune shift needs to be corrected using coupling-bumps.
- Sensitive to stray magnetic fields.

see A. Wolski’s talk: http://Icdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf
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DR Design Approaches: Example #1, the TESLA TDR lattice

Strengths
- Rela
- Larg
- Flexi

Weakness
- Larg
- Sens

DR Design Approaches: Example #2, the FNAL 6 km lattice

5 GeV, 6 km lattice (six-fold symmetry).

Injection/extraction scheme uses 6 ns rise-time, 60 ns fall-time kicker.
Lattice documented in FERMILAB-TM-2272-AD-TD

http://www.hep.uiuc.edu/home/g-gollin/linear_collider/Fermilab_damping_ring_report.pdf

filled buckets

extraction
line

RF cavities
transfer kickerk!

injection
line

Thanks to 1. Rogers
and G. Dugan (Cornell)

Strengths:

- Relatively small circumference reduces space-charge effects.

- Reduced amount of wiggler needed to achieve required damping rate.

- Injection/extraction scheme allows use of slow fall-time kicker.
Weaknesses:

- Higher average current makes electron-cloud and ion effects more difficult.

see A. Wolski’s talk: http://Icdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf

Nick Walker
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DR Design Approaches: Example #1, the TESLA TDR lattice

Strengths
- Rela
- Larg
- Flexi

Weakness
- Larg
- Sens

DR Design Approaches: Example #2, the FNAL 6 km lattice

SNEL\AREN DR Design Approaches: Example #3, the KEK 3 km lattice

Injection/

Lattice dod
http://www.hep.

Strengths:
- Relat
- Redu
- Inject

Weaknessq
- Highe

5 GeV, 3.2 km lattice (racetrack design).

16:34: 18 Thursday 1007 /2004
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Lattice layout and optical functions in
KEK 3 km damping ring.

S. Kuroda and 1. Urakawa (KEK)

see A. Wolski’s talk: http://Icdev.kek.jp/ILCWS/Talks/14wg3-10-WG3-10_DR_Wolski.pdf

Nick Walker
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e emittance tuning

= wiggler dynamics

e collective effects

e multi-bunch

e fast kicker technology
= diagnostics test bed

Nick Walker

ATE @ KEK

E‘ Extraction Line E 1.28 G eV
i | ‘ \ 2x1010 e/bunch
BE R A A ; EastArc bunches 1-20
North Straight  Mietio ik : e X1y 1.5nm / 4pm
ATF Damping Ring . 20 WeekS/year

2 weeks/month

SR Monitor

Electoron Linac

LCWS 2005 — Stanford University 18.3.2005
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BDS Issues

IR crossing angle M= m

collimation system

(machine protection) <
Beam Delivery J@
10-20MW
HP water
high-powered du@@ TR |

how many?

m —\_what power?

very active (international) group!
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BDS Strawman Model

Recommendations from the WG4
Tentative, not frozen configuration, working hypotheses, “strawman”

20 mrad

lm
2 i [28 mrad

Discussion on angles between the Linacs:

« Multi-TeV upgradeability argument is favoured by many

« Small crossing angle is disfavoured by some

Nick Walker LCWS 2005 — Stanford University 18.3.2005 32



ATE-2. EETB @ ATE

International Collaboration

(ongoing discussions)

Begin construction 8.2006
Begin operation 1.2007

Test of local correction FF optics
35nm IP beam size

Test facility for stabilisation techniques (beam-based feedback and
mechanical: goal 2Znm at IP)
Long term stability studies

Nick Walker LCWS 2005 — Stanford University 18.3.2005



Positron Source

s Large amount of charge to produce

s Three concepts:
e undulator-based (TESLA TDR baseline)
e ‘conventional’
e laser Compton based

Hotly debated subject.

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Parameters of existing and planed
pPoSItron sources

# of # of # of
rep rate bunches positrons positrons

per pulse per bunch |per pulse
TESLA TDR 5 Hz 2820 2 - 1010 5.6 - 103
NLC 120 Hz 192 0.75-10%° | 1.4 - 10712
SLC 120 Hz 1 51010 5-101%°
DESY
positron 50 Hz 1 1.5 - 10° 1.5 - 10°

source

Nick Walker
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Undulator-Based

solenoids

250 GeV:: Y —beam to

Adiabatic  accelerating Rin
undulator ~100 m 0.4 X Matching ~ structure g

Ti-alloy  Device
6D e+ emittance small enough that (probably) no pre-DR
needed [shifts emphasis/challenge to DR acceptance]

beam

Lower n production rates (radiation damage)

Need high-energy e- to make e+ (coupled operation) ®
Makes commissioning more difficult

Polarised positrons (almost) for free ©

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Conventional

s Extrapolation of existing methods
e SLC e+ source

s Extremely challenging for ILC pulse structure
« feasibility still a question

= Requires thick target(s)

e High(er) n production — radiation damage a primary
iIssue
e Large e+ emittance probably means pre-DR needed.

» Completely de-couples e* from e- machine ©
e greater flexibility v
e operability v
e commissioning v

Nick Walker LCWS 2005 — Stanford University 18.3.2005 37



Compton Source (KEK)

CO2 lasers

Conversion
tdrget 1.98 GeV 1.98 GeV

Pre-DR DR

2.8 GeV ( apture BC
Linac PP ’ ’ wctmn Q Q
‘ L /‘—P’ ’. ' , , l n I

""“‘ S 1 98 GeV

electron beam 5.8GeV ~ Collision points Linac
high current and low emittance (Parabolic mirrors)
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Reliability / Operability

A major issue for ILC — needs much more work
Current state-of-the-art is Tom Himel study for USCWO

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Summany.

= The ILC is ambitious project which pushed the
envelope In every subsystem:

= Main SCRF linac cost driver $$$
e sources
= damping rings L performance bottleneck

e pbeam delivery

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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Summany.

= The ILC is ambitious project which pushed the
envelope In every subsystem:

e Main SCRF linac cost driver $$$
® sources
e damping rings L performance bottleneck

e pbeam delivery

s Still many accelerator physics issues to deal with,
but reliability and cost issues are probably the
greater challenges

= Probably in excess of 3000 man-years already
Invested In design work.

e but still plenty for you to do if you want to join us ©

Nick Walker LCWS 2005 — Stanford University 18.3.2005
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