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The evaluation of the two-loop MSSM-contributions to the electroweak precision observables MW and sin2 θeff at

O(α2
t ), O(αtαb), O(α2

b) is presented. These contributions enter via ∆ρ, and it is explained in detail how one can

retain the true, non-vanishing value of the MSSM Higgs boson mass Mh in spite of using the gauge-less limit in the

calculation. The numerical results can be sizeable, in particular for strong squark mixing. By comparing the results

in the on-shell and DR renormalization schemes, the remaining theoretical uncertainty is found to be small.

1. INTRODUCTION

Electroweak precision observables (EWPO) like MW or the effective leptonic weak mixing angle sin2 θeff are inti-
mately related to the quantum structure of the electroweak interactions. The experimental determination of these
quantities, obtained at LEP and Tevatron, has a precision of better than one per-mille: δMW = 34 MeV (0.04%)
and δ sin2 θeff = 16 × 10−5 (0.07%) [1]. In the future, these accuracies will improve, and at the GigaZ option of a
linear e+e− collider a precision of δMW = 7 MeV [2, 3] and δ sin2 θeff = 1.3 × 10−5 [3, 4] can be achieved.

These precise measurements constitute tests of the quantum level of the Standard Model (SM) that are sensitive
even to two-loop effects. The corresponding theoretical evaluation of the SM predictions up to the two-loop level is
quite advanced, see in particular Ref. [5] for the most recent developments. On the other hand, the measurements of
the EWPO can be used to discriminate between different models of electroweak interactions and to derive constraints
on unknown parameters. The comparison of the SM and its minimal supersymmetric extension, the MSSM, is
particularly interesting since the MSSM agrees with all precision data at least as well as the SM, in some cases even
better.

It is therefore highly desirable to know the MSSM predictions for the EWPO with a precision that matches the
one of the SM and the experiments. The comparison of the SM and the MSSM predictions with the data could then
lead to precise constraints e.g. on masses of supersymmetric particles. As a step towards this goal we have evaluated
[6] the two-loop MSSM-corrections to the EWPO that enter via ∆ρ at O(α2

t ), O(αtαb), O(α2
b ), where

∆ρ =
ΣZ(0)
M2

Z

− ΣW (0)
M2

W

(1)

in terms of the Z and W self energies ΣZ,W . These are leading two-loop contributions involving the top and bottom
Yukawa couplings and come from three classes of diagrams as shown in Fig. 1. These contributions to ∆ρ induce
universal two-loop corrections to the EWPO as follows (with 1 − s2

W = c2
W = M2

W /M2
Z):

δMW ≈ MW

2
c2
W

c2
W − s2

W

∆ρ, δ sin2 θeff ≈ − c2
W s2

W

c2
W − s2

W

∆ρ. (2)

The previously known two-loop contributions to EWPO in the MSSM comprise only QCD and SUSY-QCD corrections
[7] and the O(α2

t ), O(αtαb), O(α2
b ) corrections for the class (q) in Fig. 1 [8]. Obviously, the diagrams of class (q)

contain no supersymmetric particles. The contributions from classes (q̃), (H̃) considered here in addition can be
expected to be important for squark/Higgsino masses in the electroweak range and to have a more pronounced
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Figure 1: Sample diagrams for the three classes of contributions to ∆ρ considered here: (q) t/b-quark loop with Higgs exchange,

(q̃) t̃/b̃-squark loop with Higgs exchange, (H̃) mixed quark/squark loop with Higgsino exchange.

dependence on the MSSM parameters. A similar situation was found for the case of (g − 2)µ, where the two-loop
contributions from squark-Higgs diagrams are more important than the ones from quark-Higgs diagrams [9].

In the following we will first discuss in detail the renormalization and the restrictions imposed by approximating
the EWPO by ∆ρ as in eq. (2). It turns out that a strict calculation of ∆ρ at O(α2

t ), O(αtαb), O(α2
b) would imply a

vanishing MSSM Higgs boson mass, Mh = 0, which would lead to a bad approximation for the EWPO. We will show
that it is possible to improve the approximation by taking into account the true value of Mh essentially everywhere.
Finally we will discuss the numerical results and give an account of the remaining theoretical uncertainty based on
the dependence on the renormalization scheme.

2. THE ROLE OF THE GAUGE-LESS LIMIT AND THE LIGHT HIGGS BOSON MASS Mh

2.1. Gauge-less limit and Mh = 0

∆ρ as defined in eq. (1) constitutes a part of the loop corrections to the EWPO but is no observable. By itself,
∆ρ is only UV-finite and gauge independent if corrections are considered that enter the EWPO only through vector
boson self energies in the form (2) (as opposed to e.g. vertex or box diagrams). This is the case for the O(α2

t ),
O(αtαb), O(α2

b) corrections.
Taking into account strictly only terms of O(α2

t ), O(αtαb), O(α2
b) corresponds in particular to neglecting the gauge

coupling α and thus to taking the gauge-less limit α → 0. In this limit, MZ,W → 0 while the ratio cW = MW /MZ is
fixed.

In the SM the gauge-less limit is a reasonable approximation since α � αt. In the MSSM, however, the gauge-less
limit has side-effects in the Higgs sector since supersymmetry relates the Higgs self couplings to gauge couplings. At
tree-level, the gauge-less limit implies the relations

Mh = 0, (3a)

M2
H± = M2

H = M2
A, sin α = − cosβ, cosα = sin β (3b)

for the light and heavy CP-even, the CP-odd and the charged Higgs boson masses Mh,H , MA, MH± and the angles
α, β where tanβ = v2/v1, the ratio of the two vacuum expectation values.

The particularly troublesome of these relations is the masslessness of the light Higgs boson, Mh = 0. In the SM,
where the Higgs boson mass is a free parameter even in the gauge-less limit, one knows that the result for ∆ρ at
O(α2

t ), O(αtαb), O(α2
b) is proportional to a factor [10, 11]

19 − 2π2 for MH = 0, 19 − 2π2 + f(MH) for MH �= 0. (4)

For typical values of MH =O(100 GeV), this factor is about an order of magnitude larger than for MH = 0, and the
result for MH = 0 leads to a bad approximation for the EWPO.
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Due to the similar structure of the SM and MSSM diagrams it can be expected that taking the gauge-less limit
relation Mh = 0 literally would also lead to a bad approximation for the EWPO and should therefore be avoided.
Indeed, in Ref. [8] it was observed that the class (q) contributions to ∆ρ in the MSSM are already UV-finite if all
relations in eq. (3b) but not Mh = 0 are employed. In the following, we give an explanation of this result and show
how it extends to the contributions of classes (q̃), (H̃).

2.2. Comparison of the MSSM and a general two-Higgs doublet model

In order to study these questions it is very useful to regard the MSSM as a special case of a more general two-
Higgs-doublet model (2HDM) without supersymmetry relations for the couplings. ∆ρ can be calculated at O(α2

t ),
O(αtαb), O(α2

b) in the gauge-less limit in both models, but in a general 2HDM, the gauge-less limit does not enforce
any of the relations in eq. (3).

Comparing first the contributions from class (q) in the MSSM and the 2HDM, we find that the corresponding
two-loop diagrams and the counterterm contributions from the top/bottom sector are identical. The only difference
concerns the Higgs sector counterterm contributions. In a general 2HDM, they can be derived from the one-loop
expression (F0 is a symmetric function satisfying F0(x, x) = 0, ∂xF0(x, y)|y=x = 0)

∆ρH
2HDM ∝

[
F0(M2

H± , M2
A0) + s2

β−α

(
F0(M2

H± , M2
H) − F0(M2

A0 , M2
H)

)
+ c2

β−α

(
F0(M2

H± , M2
h) − F0(M2

A0 , M2
h)

) ]
(5)

by performing the renormalization transformation Mh → Mh + δMh etc. In the MSSM, eq. (5) and the Higgs sector
counterterms vanish because of the gauge-less limit relations (3). Thus the class (q) contributions can be decomposed
as ∆ρ

(q)
2−Loop + ∆ρ

(q)
t/b−cts + ∆ρ

(q)
H−cts in the 2HDM and as ∆ρ

(q)
2−Loop + ∆ρ

(q)
t/b−cts in the MSSM. The 2HDM result is

UV-finite for all values of the Higgs sector parameters.
From this comparison we find that the MSSM result is not only UV-finite if (3) is used but more generally if

∆ρ
(q)
H−cts as derived from (5) is finite. From eq. (5) we can explicitly read off that ∆ρ

(q)
H−cts = 0 already if only the

relations (3b) are used. This explains the observation made in Ref. [8]. The MSSM result ∆ρ
(q)
2−Loop +∆ρ

(q)
t/b−cts with

the relations (3b) corresponds to a certain special case of the general 2HDM calculation. Therefore it is finite even
for the true, non-vanishing value of Mh.

For the class (q̃, H̃) contributions we obtain similar decompositions

∆ρ
(q̃,H̃)
2HDM = ∆ρ

(q̃,H̃)
2−Loop + ∆ρ

(q̃,H̃)
t/b−cts + ∆ρ

(q̃,H̃,OS4)

t̃/b̃−cts
+ ∆ρ

(q̃,H̃)
H−cts, (6)

∆ρ
(q̃,H̃)
MSSM = ∆ρ

(q̃,H̃)
2−Loop + ∆ρ

(q̃,H̃)
t/b−cts + ∆ρ

(q̃,H̃,OS3)

t̃/b̃−cts
. (7)

In this case, even if the relations (3b) are used such that ∆ρ
(q̃,H̃)
H−cts vanishes, there is still a difference between the

2HDM and the MSSM result because the t̃/b̃ sector counterterms differ as indicated by the superscripts OS4 and
OS3.

In the MSSM, supersymmetry in conjunction with SU(2) gauge invariance correlates the four sfermion masses
mt̃1,2

, mb̃1,2
. Therefore only three of them can be renormalized independently. We choose to renormalize mt̃1,2

, and
mb̃2

independently by on-shell conditions (OS3). Then the fourth renormalization constant δmb̃1
is determined as a

function of the other three in the MSSM, while in the 2HDM all four sfermion masses can be defined independently
by on-shell conditions (OS4). In the simple case of vanishing mixing between left- and right-handed sfermions,
mb̃1

= mb̃L
and we obtain the following different results for δm2

b̃L
:

δm2
b̃L
|OS3 = δm2

t̃L
+ δm2

b − δm2
t , δm2

b̃L
|OS4 = Σb̃L

(m2
b̃L

). (8)

The difference between the sfermion sector counterterms in the 2HDM and the MSSM is thus contained in the mass
shift

∆m2
b̃L

= Σb̃L
(m2

b̃L
) −

(
δm2

t̃L
+ δm2

b − δm2
t

)
. (9)
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Figure 2: ∆ρ(q) and ∆ρ(q̃2HDM) as functions of Mh for MSUSY = 400 GeV, At = 1250 GeV, tan β = 2, µ = 500 GeV and

MA =150 GeV (short-dashed), 300 GeV (full line), 1000 GeV (long-dashed). This scenario involves a light stop with mt̃1
= 120

GeV.

It turns out that this mass shift is only UV-finite if all gauge-less limit relations are used, including Mh = 0.
Accordingly, the MSSM result (7) is only finite if all relations in (3) are employed. The 2HDM result with on-shell
renormalization of all four sfermion masses is of course UV-finite for all choices of Mh.

2.3. Incorporating the Higgs boson mass into the MSSM result

The best way to take into account the non-vanishing value of Mh as much as possible is to consider the combination

∆ρ
(q̃,H̃)
MSSM(Mh = 0) +

(
∆ρ

(q̃,H̃)
2HDM(Mh) − ∆ρ

(q̃,H̃)
2HDM(Mh = 0)

)
, (10)

where the relations (3b) are used everywhere. As explained above, all three terms are individually UV-finite. Since
the difference between ∆ρ

(q̃,H̃)
MSSM and ∆ρ

(q̃,H̃)
2HDM is confined to the t̃/b̃ counterterms, the combination (10) can be written

as

∆ρ
(q̃,H̃)
2−Loop(Mh) + ∆ρ

(q̃,H̃)
t/b−cts(Mh) + ∆ρ

(q̃,H̃,OS4)

t̃/b̃−cts
(Mh) +

[
∆ρ

(q̃,H̃,OS3)

t̃/b̃−cts
(Mh = 0) − ∆ρ

(q̃,H̃,OS4)

t̃/b̃−cts
(Mh = 0)

]
. (11)

The first three terms correspond to the MSSM calculation where Mh is set to its true, non-vanishing value but
where all sfermion masses are renormalized by on-shell conditions instead of using the mass relation imposed by
supersymmetry. The term in the square brackets is proportional to the mass shift ∆m2

b̃L
(Mh = 0) that restores the

necessary supersymmetry mass relation. It is only here that Mh = 0 has to be employed.

3. NUMERICAL RESULTS

3.1. Results for different values of the supersymmetry parameters

Fig. 2 demonstrates that it is in general important to take into account the true value of the Higgs boson mass
Mh. In the left and right panels of Fig. 2, ∆ρ(q) and ∆ρ

(q̃)
2HDM, which is the only Mh-dependent term in eq. (10), are

shown as functions of Mh in a scenario with a light stop (see caption). For both the fermion and the sfermion loop
contributions the difference of setting Mh = 0 or Mh =O(100 GeV) amounts to more than 10−4.

In the remainder we focus on the numerical results from the classes (q̃, H̃) (for class (q) see Ref. [8]). In Figs. 3, 4
the results for ∆ρ as defined in eqs. (10,11) are shown, split up into the contributions for the individual classes. We
choose several representative values for the supersymmetry parameters as described in the captions, basically always
starting from the SPS1a scenario [12] and varying one or two of the parameters. In the class (q̃) contributions the
Higgs boson mass Mh is set to either 120 GeV, which is a good approximation for the true, loop-corrected value of
Mh, or to zero; the class (H̃) contributions are Mh-independent.
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Figure 3: Results for ∆ρ(q̃)(Mh = 120 GeV) (1,brown), ∆ρ(H̃) (2,green), and, for comparison, ∆ρ(q̃)(Mh = 0) (3,red), shown

as functions of the common sfermion mass MSUSY. In the left panel, the At,b = 0; in the right panel, At,b are chosen such

that the ratios MSUSY : At : Ab are as in the SPS1a scenario. The remaining supersymmetry parameters are always set to the

values of the SPS1a scenario.
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Figure 4: Results for ∆ρ(q̃)(Mh = 120 GeV) (1,brown), ∆ρ(H̃) (2,green), and, for comparison, ∆ρ(q̃)(Mh = 0) (3,red). In the

left panel, the results are shown as functions of the µ-parameter for tan β = 40, such that for large µ one sbottom becomes

light; in the right panel, the results are shown as functions of At. The remaining supersymmetry parameters are always set to

the values of the SPS1a scenario.

According to eq. (2) a contribution of ∆ρ = 10−4 leads to shifts

δMW = 6 MeV, δ sin2 θeff = −3 × 10−5. (12)

We find that contributions of this order of magnitude are possible, in particular for strong sfermion mixing (large
values of µ or At in Fig. 4) but also for a light common sfermion mass parameter MSUSY as in Fig. 3.

3.2. Different renormalization schemes and estimate of remaining theoretical uncertainty

So far we have chosen the on-shell renormalization scheme for the independent sfermion masses mt̃1,2
and mb̃2

.
In Fig. 5 the on-shell results are compared with the results in the DR scheme, where the counterterms for the soft
supersymmetry breaking parameters in the sfermion mass matrices are defined as pure divergences. This DR scheme
implies non-vanishing finite parts of the sfermion mass counterterms, which read, in the case of vanishing left-right
mixing, δm2

f̃i
|fin−part = δm2

f |fin−part. The comparison of the two renormalization schemes is interesting in order to
assess the numerical stability of the result and the intrinsic theoretical uncertainty of the two-loop contributions.
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Figure 5: The sfermion loop one-loop result ∆ρ(1L) (dashed) and the sum ∆ρ(1L) + ∆ρ(q̃,H̃) (full lines) in the on-shell (blue)

and the DR (red) renormalization scheme. The parameters are as in the right panel of Fig. 4. The left panel shows the full

results, where the differences between the curves are hardly visible; the right panel shows the differences of the results to

∆ρ(1L)|DR, i.e. (1) shows ∆ρ(1L)|OS − ∆ρ
(1L)

DR
, (2,3) show (∆ρ(1L) + ∆ρ(q̃,H̃))DR,OS − ∆ρ

(1L)

DR
. For simplicity, Mh = 0 is used

here, but the conclusions do not change for non-vanishing Mh.

We find that the difference between the on-shell and DR results for the sfermion loop contributions at the one-
loop level is of the order 10−5 to 10−4 for large sfermion mixing. At the two-loop level this renormalization-scheme
dependence is significantly reduced to well below 10−5. We have checked that this result is general and not restricted
to the particular parameter choice in Fig. 5.

In conclusion, we have evaluated the O(α2
t ), O(αtαb), O(α2

b) corrections to ∆ρ and thus to the EWPO MW and
sin2 θeff in the MSSM. Although the gauge-less limit is necessary and leads to the tree-level relation Mh = 0, we have
shown that the true MSSM Higgs boson mass can be taken into account. The numerical values of the class (q̃, H̃)
contributions (10), (11) to ∆ρ can amount to 10−4, corresponding to shifts δMW = 6 MeV, δ sin2 θeff = −3 × 10−5.
The comparison of the two renormalization schemes shows that the inclusion of the two-loop result in the MSSM-
prediction for ∆ρ and the EWPO leads to a significantly improved accuracy. The residual theoretical uncertainty
due to unknown three-loop corrections of O(α3

t,b) is well below the foreseen experimental resolution achievable at the
GigaZ option of a linear e+e− collider.
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