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One of the most important tasks of a future linear collider is the precise measurement of the threshold production

cross section of top quark pairs. In order to match the expected experimental precision it is necessary to perform

theoretical predictions which include corrections up to third order in perturbation theory. In this contribution we

report about the corrections of order β3
0α3

s to the heavy quark spectrum and wave function. Physical applications

both for the top and bottom quark system are discussed.

1. MOTIVATION

A future linear collider running at a center-of-mass energy close to the production threshold of a top quark pair
allows for a precise determination of the mass and width of the top quark, the strong coupling and — in case the
Higgs boson is not too heavy — also of the top quark Yukawa coupling. In order to match the expected experimental
precision [1] it is important to compute higher-order quantum corrections to this process. In this context we refer to
the Refs. [2–6].

The ground state energy to the heavy quarkonium system has been computed in Ref. [3, 4] through O(α5
smq)

including the third-order correction to the Coulomb approximation. The result has been used to extract mb from
the Υ(1S) meson mass and to derive a formula which relates the top quark mass to the maximum of the cross
section below the nominal threshold. The properties of the excited states are more sensitive to the nonperturbative
phenomena, and the corresponding perturbative estimates cannot be used, e.g., for the accurate determination of
the heavy-quark mass by direct comparison to the meson masses. However, they have to be taken into account in
the framework of the nonrelativistic sum rules [7] which is based on the concept of quark-hadron duality and keeps
the nonperturbative effects under control. For the practical analysis only a few states with small principal quantum
numbers n and zero orbital momentum l are of interest.

A further interesting aspect of investigating the excited states with reliable perturbative results at hand is the
possibility to test the effects and structure of the nonperturbative QCD vacuum.

In this contribution we report about the corrections of order β3
0α

3
s to the energy levels for n = 1, 2 and 3 [8, 9]. In

combination with Ref. [4] this leads to complete third-order results for the energy levels.
As far as the wave function at the origin is concerned a complete result is only available through O(α2

s) [10, 11].
The O(α2

s) correction has turned out to be so sizeable that the application of perturbation theory for a system of two
heavy quarks seemed to be questionable — even for top quarks. Thus it is indispensable to gain full control over the
next order. Logarithmically enhanced contributions of order O(α3

s ln2 αs) and O(α3
s lnαs) have been computed in

Refs. [12, 13] and [5, 6], respectively. In Refs. [8, 9] the next step has been taken and contributions of order β3
0α

3
s have

been evaluated. Due to the large numerical value of β0 these corrections are supposed to be numerically dominant.

2. ENERGY LEVELS AND WAVE FUNCTIONS TO O(β3
0α

3
s)

In the framework of nonrelativistic effective theory [14–17] the corrections to the heavy quarkonium parameters are
obtained by evaluating the corrections to the Green function of the effective Schrödinger equation [3]. The β3

0 part of
the third-order contribution, which is the main purpose of this contribution, results from the leading renormalization
group running of the static potential, VC(r). The coordinate space representation of VC can, e.g., be found in Ref. [8].
At nth order it contains βi

0 terms (i = 1, . . . , n) which are accompanied by logarithms ln(µr) raised to power 1, . . . , i.
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At third order in perturbation theory one has to consider single iterations of the β3
0 term, double iterations of the

β2
0 and β0 term and triple iterations of the first-order corrections proportional to β0. For the practical computation

we use the method elaborated in Refs. [10, 18, 19]. In this way we obtain the corrections to the energy levels and
wave function at the origin in the form of multiple harmonic sums. For general n the result is rather cumbersome.
However, for a specific n the summation can be performed analytically.

As already mentioned in the Introduction, for practical purpose in the context of sum rules it is certainly sufficient
to have results for n = 1, 2, 3 and l = 0. For this reason, in Ref. [8] the analytical results have been presented for
these values. In Ref. [9] a more general formula has been derived, which however still contains unevaluated sums.
After specifying n the same results as in Ref. [8] are obtained.

Let us for completeness present the new results. For vanishing angular momentum the perturbative part of the
energy level with principal quantum number n can be written as

Ep.t.
n = EC

n + δE(1)
n + δE(2)

n + δE(3)
n + . . . , (1)

where δE
(k)
n stands for corrections of order αk

s and the leading order Coulomb energy is given by EC
n =

−C2
Fα

2
smq/(4n2). For the O(β3

0α
3
s) term we obtain

δ
(3)

β3
0
E1 = EC

1

(
β0αs

π

)3
[
32L3

1 + 40L2
1 +

(
16π2

3
+ 64ζ(3)

)
L1 − 8 + 4π2 +

2π4

45
+ 64ζ(3) − 8π2ζ(3) + 96ζ(5)

]
,

δ
(3)

β3
0
E2 = EC

2

(
β0αs

π

)3
[
32L3

2 + 88L2
2 +

(
32 +

16π2

3
+ 128ζ(3)

)
L2 − 102 +

52π2

3
+

4π4

45
+ 112ζ(3)

−32π2ζ(3) + 384ζ(5)

]
,

δ
(3)

β3
0
E3 = EC

3

(
β0αs

π

)3
[
32L3

3 + 120L2
3 +

(
136
3

+
16π2

3
+ 192ζ(3)

)
L3 − 9514

27
+

427π2

9
+

2π4

15
+ 140ζ(3)

−72π2ζ(3) + 864ζ(5)

]
, (2)

where Ln = ln(nµ/(CFαs(µ)mq)) and ζ(i) is Riemann’s ζ function. The remaining contributions to δE(3)
n can be

found in Ref. [8].
The perturbative expansion for the wave function can be written as follows

|ψn(0)|2 = |ψC
n (0)|2

(
1 + δ(1)ψn + δ(2)ψn + δ(3)ψn + . . .

)
, (3)

where |ψC
n (0)|2 = C3

Fα
3
sm

3
q/(8πn3) is the leading order Coulomb value. Our result for the O(β3

0α
3
s) term reads

δ
(3)

β3
0
ψ1 =

(
β0αs

π

)3 [
80L3

1 +
(

52 − 80π2

3

)
L2

1 +
(
−40 − 6π2 +

10π4

9
+ 200ζ(3)

)
L1

−20 +
22π2

3
− 7π4

5
+

4π6

105
+ 112ζ(3)− 12π2ζ(3) − 16ζ(3)2 − 40ζ(5)

]
,

δ
(3)

β3
0
ψ2 =

(
β0αs

π

)3 [
80L3

2 +
(

332 − 160π2

3

)
L2

2 +
(

308 − 266π2

3
+

40π4

9
+ 400ζ(3)

)
L2

−361 +
73π2

3
− 26π4

45
+

32π6

105
+ 496ζ(3) − 48π2ζ(3) − 128ζ(3)2 − 160ζ(5)

]
,

δ
(3)

β3
0
ψ3 =

(
β0αs

π

)3 [
80L3

3 +
(
612 − 80π2

)
L2

3 +
(

2893
3

− 228π2 + 10π4 + 600ζ(3)
)
L3

−100679
54

+
183π2

2
+

52π4

15
+

36π6

35
+ 1374ζ(3)− 108π2ζ(3) − 432ζ(3)2
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−360ζ(5)

]
. (4)

In the next Section we discuss the numerical impact of the new terms to the system of two heavy quarks at
threshold.

3. PHENOMENOLOGICAL APPLICATIONS

3.1. Excited states of bottomonium

The mass of the Υ(nS) meson can be decomposed into perturbative and nonperturbative contributions

MΥ(nS) = 2mb + Ep.t.
n + δn.p.En . (5)

As discussed in the previous Section, the perturbative contribution Ep.t.
n is know up to O(mqα

5
s). For n = 1 the

phenomenological application of the result to the Υ(1S) meson mass has been discussed in Ref. [4] and a competitive
extraction of the bottom quark mass has been obtained. It is thus tempting to investigate Eq. (5) also for excited
states. In this context it is convenient to consider the ratio

ρn =
En − E1

2mb + E1
, (6)

which depends only logarithmically on the bottom quark mass and does not suffer from renormalon contributions.
Including successively higher orders one obtains for µ = µs = 2.1 GeV

102 × ρp.t.
2 = 1.49 (1 + 0.79NLO + 1.18NNLO + 1.21N3LO + . . .) ,

102 × ρp.t.
3 = 1.77 (1 + 0.92NLO + 1.37NNLO + 1.55N3LO + . . .) . (7)

In Tab. I the sum of the individual orders is compared to the experimental result given by ρexp
n = (MΥ(nS) −

MΥ(1S))/MΥ(1S). It is worth mentioning that although the convergence of the series is not good, the N3LO pertur-
bative result is in impressive agreement with the experimental values both for n = 2 and n = 3. We would like to
emphasize the role of the perturbative corrections necessary to bring theory and experiment into agreement. From
this observation one can conclude that the magnitude of the nonperturbative effects for the excited state, δn.p.E2, is
of the same size as δn.p.E1. The latter was estimated to ≈ 60 MeV in Ref. [4]. Similar conclusion has been made in
Ref. [20] in a somewhat different framework.

3.2. Υ(1S) leptonic width

It is tempting to use the new corrections to the wave function in order to predict the decay rate of the Υ(1S)
meson into leptons. In the nonrelativistic effective theory the leading order approximation reads

ΓLO(Υ(1S) → l+l−) ≡ ΓLO
1 =

4πNcQ
2
bα

2|ψC
1 (0)|2

3m2
b

, (8)

Υ(2S) Υ(3S)

102 × ρp.t.
n 6.2+1.7

−1.2 8.6+2.4
−1.8

102 × ρexp
n 5.95 9.46

Table I: Perturbative versus experimental results for the parameter ρn as defined in Eq. (6). The theoretical uncertainty

corresponds to αs(MZ) = 0.118 ± 0.003.
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Figure 1: (a) Γ1 normalized to Γ̂1 ≡ ΓLO
1

∣∣
αs→αs(µs)

as a function of µ at LO (dotted), NLO (dashed), NNLO (dotted-dashed)

and N3LO′ (full line). The horizontal line corresponds to the experimental value Γexp(Υ(1S) → e+e−) = 1.31 keV. For the

N3LO′ result, the band reflects the errors due to αs(MZ) = 0.118±0.003. (b) The analog plot for R1 with R̂1 ≡ RLO
1

∣∣
αs→αs(µs)

.

with Nc = 3 and Qb = −1/3. Combining the known perturbative results up to O(α3
s lnαs) (see Ref. [5]) with the

O(β3
0α

3
s) contribution discussed in Section 2 we find

Γ1 ≈ ΓLO
1 (1 − 0.445NLO + 1.75NNLO − 1.67N3LO′ + . . .) , (9)

where the prime indicates that the N3LO corrections are not complete. Though the perturbative corrections are
huge, the rapid growth of the perturbative coefficients stops at NNLO if we assume that the β3

0 term sets the scale
of the nonlogarithmic third-order contribution.

In Fig. 1(a), the width is plotted as a function of µ including the LO, NLO, NNLO and N3LO′ approximations
along with the experimental value. As one can see the available O(α3

s) terms stabilize the series and significantly
reduce the scale dependence. At the scale µ′ ≈ 2.7 GeV, which is close to the physically motivated scale µs, the
N3LO′ corrections vanish and at the scale µ′′ ≈ 3.1 GeV the result becomes independent of µ; i.e., the N3LO′ curve
shows a local maximum. In the whole range of µ between approximately 2 GeV and 5 GeV the result for the width
agrees with the experimental value within the error bar due to the uncertainty of the strong coupling constant. This
may signal that the missing perturbative corrections are rather moderate. Furthermore, this result constitutes a
significant improvement as compared to the NLL approximation discussed in Ref. [21].

For a definite conclusion, however, one has to wait until the third-order corrections are completed. The potentially
most important part to be computed is the ultrasoft contribution which includes αs(µ) normalized at relatively low
ultrasoft scale µus ∼ α2

smq. Currently only a partial result for this contribution exists [22].

3.3. Top quark threshold production

In contrast to the bottom system the nonperturbative effects in the case of the top quark are negligible. However,
due to the relatively large top quark width, Γt, its effect has to be taken into account properly [23] since the Coulomb-
like resonances below threshold are smeared out. Actually, the cross section only shows a small bump which is
essentially the remnant of the ground state pole. The higher poles and continuum, however, affect the position of the
resonance peak and move it to higher energy. The value of the normalized cross section R = σ(e+e− → tt̄)/σ(e+e− →
µ+µ−) at the resonance energy is dominated by the contribution from the would-be toponium ground state which in
the leading approximation reads RLO

1 = 6πNcQ
2
t |ψC

1 (0)|2/ (
m2

t Γt

)
, where Qt = 2/3. Numerically we find

R1 ≈ RLO
1 (1 − 0.243NLO + 0.435NNLO − 0.268N3LO′ + . . .) . (10)
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The new third-order corrections proportional to β3
0 amount to approximately −7% of the LO approximation at the

soft scale which is the same order of magnitude as the O(α3
s) linear logarithmic term. The available N3LO terms

improve the stability of the result with respect to the scale variation as can be seen in Fig. 1(b). The absence of a
rapid growth of the coefficients along with the alternating-sign character of the series and the weak scale dependence
suggest that the missing perturbative corrections are moderate and most likely are in the few-percent range. It
is interesting to note that the perturbative contributions of different orders, which are relatively large when taken
separately, cancel in the sum to give only a few percent variation of the leading order result.
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