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We discuss the possibility to cleanly distinguish, in electron-positron annihilation into fermion pairs at a high energy

collider, the indirect manifestations of graviton exchange from those of four-fermion contact interactions. The method

is based on cross section asymmetries emphasizing the spin-2 character of graviton exchange and is explicitly applied

to the ADD scenario for gravity in extra dimensions. The availability of initial beams longitudinal polarization is

also taken into account in the analysis. For typical c.m. energies and time-integrated luminosities foreseen at the

International Linear Collider (
√

s = 0.5 − 1 TeV, Lint = 50 − 1000 fb−1), a 5σ identification reach of 3.5 − 5.8 TeV

for the mass scale MH relevant to the ADD model can be obtained, while the size of the reach on the mass scales Λ

characterizing four-fermion contact interactions can be of the order of 45 − 65 TeV.

1. INTRODUCTION

In a variety of proposed new physics (NP) scenarios, non-standard interactions among the familiar Standard Model
(SM) particles can be mediated by exchanges of new quantum states with mass scales expected to be much larger
than the c.m. energy available at current (and perhaps future) colliders. Accordingly, only indirect manifestations of
such high mass scales and their corresponding novel interactions can occur, through deviations of the measured cross
sections from the SM predictions. The most convenient theoretical representation of such interactions is provided
by the effective interaction framework, where the non-standard Hamiltonian is expanded in a series of specific
local operators of increasing dimension, and accordingly the transition amplitudes for processes among the SM
particles are power expanded in the (small) ratio between the ‘low’ c.m. machine energy and the relevant high mass
scales. Generally, to limit the number of unknown parameters to be constrained (or determined) experimentally, the
lowest-dimensional operator is retained in the expansion, assuming higher powers to be negligible due to the strong
suppression by the large mass scale. Clearly, in this situation, NP searches are favoured by the signal enhancement
due to the high energies and luminosities available at the planned linear colliders.

A relevant aspect in this regard is that, in principle, different kinds of non-standard interactions may produce in the
integrated cross sections similar deviations from the SM and, therefore, it is important to devise suitable observables
that, given the expected experimental accuracy, can discriminate among the various, and competing, possible sources
of a given deviation. Here, we will focus on the problem of cleanly identifying, in high energy e+e− → f f̄ [f �= e, t]
at the International Linear Collider (ILC), signals of the ADD model of gravity in large, compactified, extra spatial
dimensions with respect to the effects originating from four-fermion contact interactions. For this purpose, we shall
use particular combinations of integrated cross sections, the so-called “center-edge asymmetries”, sensitive to the
angular dependence of deviations from graviton exchange.

We recall that the differential cross section of the considered processes reads, in terms of helicity cross sections [1]
(z ≡ cos θ; α, β = L, R):

dσ

dz
=

1
4

∑
αβ

dσαβ

dz
;

dσαβ

dz
= Ncolors

3
8
σpt|Mαβ|2 (1 ± z)2, (1)

where ‘±’ refer to the LL, RR and LR, RL configurations, respectively. The helicity amplitudes can rather generally
be expanded into the familiar γ, Z s-channel exchanges plus deviations induced by the novel interaction (χZ(s) is
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here the Z propagator):

Mαβ ≡ MSM
αβ + ∆αβ = QeQf + ge

α gf
β χZ(s) + ∆αβ . (2)

It may be useful to also reacall that the SM cross section can be decomposed into z-even and z-odd parts through
the total and forward-backward cross sections as

dσSM

dz
=

3
8
σSM

(
1 + z2

)
+ σSM

FB z. (3)

In the ADD large extra dimension scenario [2], only gravity can propagate in at least two extra spatial dimensions
compactified to a radius R of the millimeter size or less, while the SM particles live in the ordinary four-dimensional
spacetime and their mutual gravitational interactions are represented by the exchange of a tower of graviton Kakuza-
Klein (KK) states �n, very weakly [gravitationally] coupled and with evenly spaced (and almost continuous) mas
spectrum m2

�n = �n2/R2 [3]. The summation over the KK spectrum requires the introduction of a ultaviolet cut-off
mass scale MH , expected in the (multi) TeV region, and the interaction can be represented by a dimension-8 effective
Lagrangian of the form [4]

LADD = i
4λ

M4
H

T µνTµν , (4)

where Tµν is the energy-momentum tensor and λ = ±1.1 The corresponding deviations in Eq. (2) are z-dependent:

∆LL(ADD) = ∆RR(ADD) = fG(1 − 2z), ∆LR(ADD) = ∆RL(ADD) = −fG(1 + 2z), (5)

where fG = λ s2/(4παe.m.M
4
H) represents the strength of the interaction associated with spin-2 graviton exchange.

The four-fermion contact interaction scenario (CI) can be represented by the following vector-vector dimension-6
effective Lagrangian, and corresponding helicity amplitudes deviations from the SM (|ηαβ | = 1, 0) [6]:

LCI = 4π
∑
α,β

ηαβ

Λ2
αβ

(ēαγµeα)
(
f̄βγµfβ

)
; ∆αβ(CI) = ± s

αe.m.

1
Λ2

αβ

. (6)

As one can see, in this case amplitudes deviations are z-independent. Actually, although originally inspired by
fermion compositeness remnant binding forces, LCI should more generally be considered as an effective, “low energy”
representation of a variety of non-standard interactions acting at energy scales Λ much larger than the process
Mandelstam variables, for example the exchanges of very heavy Z ′s [7], leptoquarks [8] and even scalar particle
exchanges in the t-channel, such as sneutrinos [9] in the contact interaction limit.

Clearly, suitable observables are needed to discriminate signals of the different kinds of NP models.

2. CENTER-EDGE ASYMMETRY

We consider the difference between the “central” and “edge” parts of the cross section:

σCE(z∗) ≡ σC − σE =

[∫ z∗

−z∗
−
(∫ −z∗

−1

+
∫ 1

z∗

)]
dσ

dz
dz, (7)

with 0 < z∗ < 1, and define the asymmetry ACE by the ratio [10]

ACE =
σCE

σ
. (8)

1In principle, a smooth cutoff procedure based on the “minimal length scale” can be applied in the sum over KK states [5].
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This asymmetry is sensitive only to the z = cos θ-even terms of the differential cross section. Indeed, Eq. (6) shows
that in the four-fermion interaction case the differential cross section will have exactly the same angular dpendence
as the SM one [see Eq. (3)], therefore:

ACI
CE(z∗) = ASM

CE =
1
2

z∗ (z∗2 + 3) − 1, (9)

independent of
√

s, flavour of final fermions and longitudinal polarization. Accordingly, as regards the deviation from
the SM prediction, ∆ACE ≡ ACE − ASM

CE , for any value of z∗:

∆ACI
CE ≡ ACI

CE − ASM
CE = 0. (10)

Also, from Eq. (9) one notices that for the particular value z∗0 = (
√

2 + 1)1/3 − (
√

2 − 1)1/3 � 0.60 (θ � 53.4◦), one
has ASM

CE(z∗0) = ACI
CE(z∗0) = 0.

By contrast, Eq. (5) implies that finite deviations of ACE occur for the graviton-exchange ADD scenario for all z∗,
and these are dependent on the flavour of the final states f . Indeed, at the leading order in the graviton coupling
fG, i.e., retaining in the differential cross section interference terms with the SM only:

∆AADD
CE (z∗) ≡ AADD

CE − ASM
CE ∝ fGz∗

(
1 − z∗2

)
. (11)

In conclusion, the asymmetry ACE is “blind” to conventional four-fermion contact interactions at all z∗ (no
deviation from the SM in this case), whereas it is sensitive to ADD graviton exchange effects and, accordingly, can
cleanly identify the new physics represented by this scenario. Moreover, the maximal senstitivty could be obtained
by measuring ACE around z∗0 where the SM and the CI contributions are both vanishing.2

3. CENTER-EDGE FORWARD-BACKWARD ASYMMETRY

With 0 < z∗ < 1, we now consider the analogue of Eq. (7)

σCE,FB ≡ (σC,FB − σE,FB) =

[(∫ z∗

0

−
∫ 0

−z∗

)
−
(∫ 1

z∗
−
∫ −z∗

−1

)]
dσ

dz
dz. (12)

This asymmetry is defined by the ratio, sensitive to z = cos θ-odd terms only [12]:

ACE,FB =
σCE,FB

σ
. (13)

For the case of four-fermion contact interactions, Eq. (6), due to the identical angular dependence as in the SM,
one immediately finds the relations

ASM
CE,FB(z∗) = ASM

FB (−1 + 2z∗2) =⇒ ACI
CE,FB(z∗) = ACI

FB (−1 + 2z∗2). (14)

Correspondingly, in general contact interactions determine finite deviations of ACI
CE,FB from the SM predictions,

as indicated by Eq. (14). However, at the value z∗CI = 1/
√

2 (θ = 45◦) one has ASM
CE,FB(z∗CI) = ACI

CE,FB(z∗CI) =
∆ACI

CE,FB(z∗CI) = 0, i.e., no deviation there. Consequently, ACE,FB �= 0 at this value of z∗ would definitely signal the
presence of NP different from four-fermion contact interactions.

In the graviton exchange ADD model, using Eq. (5) one directly finds for the deviation of ACE,FB(z∗) from the
SM the following expression to leading order in fG:

∆AADD
CE,FB(z∗) = ∆AADD

FB

(
−1 + 2z∗4

) [
∆AADD

FB ∝ fG

]
. (15)

2This observable can similarly be applied to identify graviton exchange in lepton-pair production at hadron colliders [11].
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Figure 1: ∆ACE,FB(z∗) in the CI and the ADD scenarios for the values of Λ and MH indicated in the text. The ± superscripts

indicate positive and negative interference with the SM, respectively. The vertical bars are the statistical uncertainty at a ILC

with
√

s = 0.5 TeV and Lint = 50 fb−1.

Eq. (15) shows that ∆AADD
CE,FB(z∗G) = 0 for z∗G = 2−1/4 � 0.84 (θ � 33◦), i.e., no deviation from graviton exchange

at that value of z∗ but possible deviations from contact interactions can occur there. The behaviour with z∗ of
∆ACE,FB(z∗) in the two NP scenarios considered here is shown in the case of annihilation into muon pairs in Fig. 1,
for MH = 2 TeV and Λ = 20 TeV as illustrative examples. The ‘+’ and ‘-’ superscripts indicate positive or negative
interference with the SM. To show their statistical significance, deviations are compared to the statistical uncertainty
expected at the ILC with

√
s = 0.5 TeV and Lint = 50 fb−1, that are typical planned values [13].

The above considerations, and Fig. 1, then suggest the following kind of analysis. The measurement of ACE,FB at
z∗ ≈ z∗CI or below has maximal sensitivity to the ADD graviton exchange scenario, with no (or minimal) contamina-
tion from CI; this measurement can be combined with the measurement of ACE to further enhance the identification
reach on MH . Instead, the measurement of ACE,FB in an interval around z∗ ≈ z∗G should have maximal sensitivity to
four-fermion CI, hence to the scales Λ, with least contamination from ADD effects. Inclusion of beams longitudinal
polarization is easily obtained and results, for our basic observables ACE and ACE,FB, into the same z∗ dependence
as found above times a factor accounting for the initial spin configurations [12].

4. IDENTIFICATION REACHES ON THE MASS SCALES

Basically, in order to evaluate the potential identification reach on the fundamental mass parameters MH and Λ
at the ILC, as achieved by measurements of the asymmetries defined above, one should compare the deviations from
the SM predictions to the expected experimental uncertainties on those observables. One can apply a conventional
χ2 analysis, where the χ2 can be formally defined as

χ2 =

(
∆Of

)2
(δOf )2

, (16)

with O = ACE, ACE,FB, ∆Of are the deviations of the asymmetries previously discussed, and δOf are the experimen-
tal uncertainties. In practice, several final states f and ACE with ACE,FB themselves can be appropriately combined

0307



Figure 2: Left panel: 5σ identification reach on the mass scale MH vs. integrated luminosity. Right panel: 5σ reach on the mass

scales Λαβ vs. integrated luminosity, labels attached to the curves indicate the helicity configurations αβ = LL, RR,LR, RL,

see Eq. (6).

in Eq. (16). Constraints on MH and Λs will then follow from the condition χ2 ≤ χ2
C.L., where the actual value of

χ2
C.L. depends on the desired confidence level.
We will here consider an ILC with c.m. energy of either 0.5 Tev or 1 TeV and in both cases electron and positron

longitudinal polarizations |P1| = 0.80 and |P2| = 0.60, and will plot the numerical results on MH and Λ for time-
integrated luminosity in the range 50 − 1000 fb−1. Regarding systematic uncertainties, one expects them to largely
cancel in the ratios (8) and (13), and thus the statistical uncertainties to dominate the experimental uncertainty.
Indeed, the major sources of systematic uncertainties are found to originate from the errors in the luminosity and in
the degree of initial beams longitudinal polarization, for which we assume ∆Lint/Lint = ∆P1/P1 = ∆P2/P2 = 0.5%
(more details can be found in [12]).

In Fig. 2 [left panel], the 5σ identification reach on the mass scale MH relevant to graviton exchange is shown as a
function of the luminosity, and for different longitudinal beam polarization configurations. Here, the final annihilation
f f̄ channels with f = µ, τ, b, c have been summed over, and the asymmetries ACE(z∗CI) and ACE,FB(z∗CI) have been
combined. As pointed out in previous sections, this provides the maximal sensitivity to the ADD graviton exchange
scenario, with no contamination from four-fermion contact interactions. One can see that the identification reach on
MH at the 5σ level is of the order of 3.5−5.8 TeV for energies between 0.5 TeV and 1 TeV and a luminosity of about
500 fb−1, and can potentially increase to (6.3 − 7.5) × Ec.m. for the highest luminosity. This should be compared
with the current limit from LEP and Tevatron, MH ≥ 1.10 − 1.28 TeV [14]. Also, one can notice the (slow) scaling
of MH ∼ (s3Lint

)1/8, reflecting the (high) dimension of the effective interaction of Eq. (4).
In the right panel of Fig. 2, we show the 5σ reach on the four-fermion interaction mass scales Λ as a function

of luminosity, at the ILC c.m. energy of 1 TeV. Here, the observable ACE,FB(z∗G) is used, and only the final l+l−

pairs with l = µ, τ are combined in the χ2. Also, the longitudinal polarizations are chosen as P1 = 0.80 and
P2 = −0.60, to disentangle the various helicity combinations of Eq.(6). It can be seen that the limits on Λs scale as
∼ (sLint)

1/4, faster than for MH , due to the (lower) dimension-6 of the effective interaction (6). According to the
previous discussion, maximal sensitivity to four-fermion CI, with least (or no) contamination from ADD graviton
exchange is expected. The potential 5σ reach on Λs of the linear collider ranges up to 45 TeV and 65 TeV for c.m.
energies of 0.5 TeV and 1 Tev, respectively, depending on the particular helicity configurations. Current bounds, of
the order of 10 TeV and depending on the CI model considered, are reviewed in [15]. Also, the limits on Λ obtained
here may potentially improve the constraints on a very heavy sneutrino parameters [12].
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M. K. Ünel [for the CDF and D0 Collaborations], arXiv:hep-ex/0411067.

[15] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 502, 1 (2004).

0307


