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Recent progress concerning regularization of supersymmetric theories is reviewed. Dimensional reduction is refor-

mulated in a mathematically consistent way, and an elegant and general method is presented that allows to study

the supersymmetry-invariance of dimensional reduction in an easy manner. This method is applied to several super-

symmetry identities at the one- and two-loop level, and thus the extent to which dimensional reduction is known to

preserve supersymmetry is significantly enlarged.

1. INTRODUCTION

Regularization by dimensional reduction (DRED) [1] is the most common regularization for supersymmetric the-
ories. In contrast to ordinary dimensional regularization [2, 3], DRED has been shown to preserve supersymmetry
in several cases [4–6]. Nevertheless, DRED has always been known to be mathematically inconsistent [7], and as a
consequence there is no general proof that it preserves supersymmetry in all cases.

The fact that no consistent supersymmetric and gauge-invariant regularization is known leads immediately to funda-
mental questions: Are supersymmetric theories renormalizable at all? Are there genuine supersymmetry anomalies?
These questions have been studied extensively in a regularization-independent way, and the answers are Yes and No,
respectively [8–10].

But the problems of DRED also lead to very practical questions: (1) Does the mathematical inconsistency matter in
practical calculations? (2) To what extent is DRED supersymmetric? These questions are particularly important in
view of the SPA (“Supersymmetry Parameter Analysis”) project [11], where loop calculations within supersymmetry
are required and supersymmetry parameters are defined in the DR scheme. The DR scheme is equivalent to using
DRED as a regularization and to perform minimal subtraction of the divergent terms.

If DRED would break supersymmetry in a certain calculation, additional (often finite) counterterms would have
to be found and added in order to restore supersymmetry. Hence, in such a case the DR scheme as such could not
be used and would have to be modified. Moreover, the technical determination of such supersymmetry-restoring
counterterms is often tedious [6].

In the present paper we review the results of [12], where DRED was studied with three aims:

(1) DRED should be redefined without a mathematical inconsistency.

(2) A general method should be found to study the supersymmetry-invariance of DRED.

(3) The general method should actually be applied to verify that DRED preserves supersymmetry in several non-
trivial cases of practical interest.

It turns out that the consistent formulation of DRED allows to prove the quantum action principle, which is a
theorem that can be used as the key ingredient in the study of symmetry-properties of DRED. We will describe the
consistent formulation of DRED in Sec. 2, the quantum action principle and its role in Sec. 3; the desired method
and its applications are discussed in Sec. 4.

In the remainder of this introduction we mention another problem of DRED that is important for the SPA project
and the question to what extent the DR scheme can be used for hadronic processes. In [13, 14] an apparent mismatch
between the DRED-result for the process gg → tt̄ and the expectation from QCD-factorization has been reported.
In the case of massless quarks instead of tt̄, the transition from DRED to ordinary dimensional regularization for
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the NLO-corrections involves a simple convolution with the LO cross section. In the case of massive tt̄ in the final
state, however, the transition involves additional terms that do not have the expected factorized structure. It is an
important task to understand this puzzling result and to reconcile DRED with QCD-factorization [15].

2. MATHEMATICAL CONSISTENCY

In DRED, only momenta and momentum integrals are continued from 4 to D dimensions, while γ-matrices and
gauge fields remain 4-dimensional objects. Accordingly, two types of metric tensors can appear in the computation
of Feynman diagrams: the 4-dimensional gµν can appear e.g. in the numerator of vector boson propagators, and
the D-dimensional ĝµν can appear in the result of a D-dimensional integral

∫
dDp[pµpνf(p2)]. Defining also a

(4 −D)-dimensional metric tensor g̃µν , they satisfy the following relations:

gµν = ĝµν + g̃µν gµνgµν = 4 ĝµν ĝµν = D g̃µν g̃µν = 4 −D (1a)

gµν ĝν
ρ = ĝµρ gµν g̃ν

ρ = g̃µρ ĝµν g̃ν
ρ = 0 (1b)

These relations correspond to a decomposition of the 4-dimensional space into a D-dimensional subspace and an
orthogonal (4 − D)-dimensional subspace. Using ĝµν and g̃µν as projectors onto these subspaces we can define
âµ = ĝµνaν , ãµ = g̃µνaν for any 4-dimensional object aµ. In particular this is possible for the 4-dimensional ε-tensor,
and we can write down the product

ε̂µνρσ ε̃αβγδ ε̂µνρσ ε̃
αβγδ . (2)

If we now use the 4-dimensional relation

εµ1µ2µ3µ4 εν1ν2ν3ν4 ∝ det((gµiνj )) (3)

we can evaluate the product (2) in two ways. If (3) is applied to the first and second factor in (2), we obtain zero, but
applying (3) to factors 1–3 yields D(D− 1)(D− 2)(D− 3) and applying it to factors 2–4 yields ε(ε− 1)(ε− 2)(ε− 3),
where ε = 4 −D. Therefore, evaluating (2) in these two ways leads to the two results

0 = D(D − 1)2(D − 2)2(D − 3)2(D − 4). (4)

This is mathematically inconsistent with D taking arbitrary values. This fundamental inconsistency of DRED was
already discovered in Ref. [7], and it can be rewritten in several ways involving ε-tensors, γ5, or only metric tensors
(see e.g. [16]).

It is important to note that the inconsistency (4) is not derived from the relations (1) alone but that the purely
4-dimensional relation (3) is necessary as well. In [12] it is shown that the rules (1) are in fact completely consistent.
Well-defined objects gµν , ĝµν , g̃µν are explicitly constructed such that the relations (1) are satisfied. This ensures
that any application of (1) alone will never lead to an inconsistent result such as (4). The explicit objects constructed
in Ref. [12], however, do not satisfy eq. (3), which is why the inconsistency is avoided.1

Similarly to gµν , ĝµν , g̃µν , γ-matrices can be constructed that satisfy

{γµ, γν} = 2gµν , γµγµ = 4, (5)

but that do not satisfy further 4-dimensional relations like Fierz relations. For the evaluation of many Feynman
diagrams, eqs. (1), (5) are sufficient. Therefore, for a wide range of applications, the consistent version of DRED,
where only (1) and (5) may be used, does not differ from the traditional version, where (3) or Fierz identities might
be used in addition.

The consistent formulation of DRED has a crucial consequence. Beyond the practical evaluation of Feynman
diagrams, it allows to give a general proof of the quantum action principle. This will be exploited in the next section.

1In particular, the 4-dimensional metric tensor gµν appearing here does not have the index representation g00 = −gii = 1 for i = 1, 2, 3
and gµν = 0 otherwise. gµν , ĝµν , g̃µν have to be more complicated objects.
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3. SUPERSYMMETRY OF DRED AND THE QUANTUM ACTION PRINCIPLE

It is an important open question whether or to what extent DRED preserves supersymmetry. So far, several
supersymmetry identities between propagators and/or three-point functions have been shown to be valid in DRED
at the one-loop level [4–6]. However, these checks do not even exhaust all cases of practical interest; e.g. supersym-
metry Slavnov-Taylor identities relating four-point functions and/or two-loop identities have not been checked. The
traditionally used methods are tedious and by using them it is hard to extend the checks performed in the literature.

Our second aim is therefore to develop a method that simplifies the study of supersymmetry in DRED. Generally,
supersymmetry Ward or Slavnov-Taylor identities can be written in the form

δSUSY〈Tφ1 . . . φn〉DRED (?)
= 0, (6)

where the (?) indicates that the identity is not necessarily valid in DRED but it is our task to verify it. In Refs. [4–6]
this verification was done by explicitly evaluating all Green functions on the left-hand side of (6) and checking that
they all add up to zero. A drastically simpler way to check (6) can be based on the quantum action principle, which
relates the left-hand side of (6) to a simpler Green function (see Ref. [12] for more details, a heuristic explanation
using the path integral and the proof in DRED):

i δSUSY〈Tφ1 . . . φn〉DRED =〈Tφ1 . . . φn∆〉DRED , where ∆ =
∫
dDxδSUSYL. (7)

The right-hand side of the quantum action principle is a single Green function involving the insertion of the composite
operator ∆, which can be obtained from the supersymmetry variation of the regularized Lagrangian. The caveat
here is that the quantum action principle itself is a regularization-dependent statement and it is not obviously valid
in DRED. However, using the consistent formulation presented in the previous section, (7) can be shown to hold in
DRED [12]. The proof turns out to be analogous to the corresponding proof for dimensional regularization [3].

Hence a given supersymmetry Slavnov-Taylor identity can be checked by simply verifying that 〈Tφ1 . . . φn∆〉DRED

vanishes. In the next section, we will show how easily this can be done in several non-trivial examples.
Before applying the quantum action principle explicitly to supersymmetry Slavnov-Taylor identities, it is convenient

to introduce the notation used in Refs. [6, 8, 9] and in particular for the Slavnov-Taylor identity of the MSSM [10]. All
Slavnov-Taylor identities of the form (6) can be combined into a single identity S(ΓDRED) = 0, where ΓDRED is the
vertex functional of one-particle irreducible (1PI) Green functions, regularized using DRED, and S(·) is a bilinear
operator. Particular 1PI Green functions are obtained as Γφ1... = (δΓ/δφ1 . . .)|φi=0, and identities for particular
Green functions analogous to (6) can be rederived by taking derivatives like

δn+1S(ΓDRED)
δφn . . . δφ1δε

∣∣∣∣
φi=0

(?)
= 0, (8)

where ε denotes the supersymmetry transformation parameter.
The quantum action principle then takes the form

S(ΓDRED) = i[S(Γcl)] · ΓDRED, (9)

where [∆] ·ΓDRED denotes the insertion of an operator ∆ into the 1PI vertex functions analogous to the insertion on
the right-hand side of eq. (7). Γcl denotes the regularized classical action

∫
dDxL.

4. SUPERSYMMETRY OF DRED UP TO THE TWO-LOOP LEVEL

We are now going to apply the strategy of the previous section to study several supersymmetry identities in DRED.
That is, we consider identities of the form (8) and replace the left-hand side by(

i[S(Γcl)] · ΓDRED
)
φn...φ1ε

, (10)

the 1PI Green function with insertion of the operator S(Γcl) and external fields εφ1 . . . φn. The corresponding identity
(8) is valid in DRED precisely if (10) vanishes; in general, (10) constitutes a possible violation of eq. (8).
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4.1. Insertion operator and its Feynman rule

As a first step, the insertion operator [S(Γcl)] has to be evaluated; it is a major advantage that this operator is
universal and the evaluation has to be performed only once. The result for a general supersymmetric gauge theory
has been given in [12]. We quote here only the part related to matter field interactions:

S(Γcl) = −g
∫
dDx

[
2(ψPRε)(g̃PLψ) + 2(ε̄PLψj)(ψiPRg̃ij) + (ψiγ

µPLψj)(ε̄γµg̃ij) + . . .
]
. (11)

Here φ and ψ denote the scalar and fermionic components of chiral multiplets; g̃ denotes the gaugino field. All terms
in S(Γcl) are four-fermion operators. In strictly 4 dimensions, where Fierz identities can be used, S(Γcl) = 0, but in
DRED, where Fierz identities are invalid, the insertion of S(Γcl) into Green functions could lead to non-vanishing
breakings (10).

As a second step, the Feynman rule corresponding to the insertion of S(Γcl) into a diagram has to be determined.
For our applications, diagrams of the basic topology shown in Fig. 1(a) are most relevant. In these diagrams, the g̃
and ψ leaving the vertex corresponding to S(Γcl) are connected to a closed fermion loop via emission of a scalar field
φ†. Additional boson lines can be attached in the actual applications. Denoting the string of γ-matrices attached
to the external ψ line as A and the γ-string associated to the closed fermion loop as B, the Feynman rule for this
diagram reads

(γµBγµ − 2PRBC)PLA− 2PLATr(PRB). (12)

Here PR,L = 1
2 (1 ± γ5) and BC is derived from B using the rule (γµ1 . . . γµn)C = (−1)nγµn . . . γµ1 . Again this

expression (12) vanishes identically in strictly four dimensions.
In DRED, however, where only the rules (1), (5) can be applied, eq. (12) does not vanish in general, but it

does vanish if B does not contain more than three γ-matrices. This observation turns out to be sufficient for all
applications described below.

4.2. Examples

The first example we consider is the identity δ3S(Γ)
δφ†δψδε̄ = 0. Its explicit form reads

0 = Γψε̄YφiΓφ†φi − Γφ†Yψiε̄
Γψψi , (13)

and it expresses the fundamental supersymmetry relation between the φ and ψ self energies, including the equality
of the φ and ψ masses. Eq. (13) has already been studied extensively, and it has been shown to be valid in DRED at
the one-loop level in various supersymmetric models [6]. The checks performed in Refs. [6] involve the evaluation of
all four Green functions in eq. (13). In particular the necessity to evaluate also the Green functions involving Yφi and
Yψi, corresponding to loop-corrected supersymmetry transformations of φi and ψi, makes the checks rather tedious.

Examining identity (13) becomes almost trivial if the quantum action principle is used. The possible violation of
(13) is given by

(
i[S(Γcl)] · ΓDRED

)
φ†ψε̄ , (14)

and the diagram in Fig. 1(a) is the single one-loop contributing to this violation. In this diagram, the γ-string B,
corresponding to the closed loop, contains at most two γ-matrices. Hence, the expression (12) and the whole diagram
vanish, and thus there is no violation of (13) in DRED at the one-loop level.

It is possible to extend this analysis to the two-loop level. There are several two-loop diagrams corresponding
to the possible violation (14); the one with the most γ-matrices in the fermion loop is shown in Fig. 1(b). After
integrating over the fermion loop momentum, this diagram contains only up to three γ-matrices in the γ-string B,
and therefore it vanishes. It can be easily seen that the same is true for all two-loop diagrams contributing to (14).
This shows that the propagator identity (13) is valid in DRED even at the two-loop level.
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In a similar way one can derive and study an identity relating the loop-corrected supersymmetry transformations
Γψε̄Yφi and Γφ†Yψiε̄

. Such identities are generally important because they express the fact that in spite of loop
corrections to the supersymmetry transformations, the supersymmetry algebra still holds. In turn, this is a necessary
condition for identities like (13) to correspond to supersymmetry relations. In Refs. [6] several supersymmetry algebra
identities have been discussed and verified at the one-loop level.

We can use again the quantum action principle to write the possible violation of the identity relating Γψε̄Yφi and
Γφ†Yψiε̄

in the form (10). It turns out that there is no corresponding one-loop diagram at all. Moreover, it can be
easily shown that all two-loop diagrams contributing to the violation of the identity vanish [12].

Therefore, in this approach not only the results found in [6] become completely obvious, but it is also very easy to
extend the results to the two-loop level.

(a)

ε̄ ψ

g̃ ψ

φ†

(b)

ε̄ ψ

g̃
ψ

φ†

(c)

ε̄ ψ

g̃ ψ

φ† φ†

φ

Figure 1: (a): Basic topology of a diagram involving an insertion of S(Γcl), eq. (12). Additional boson lines have to be attached

in the actual diagrams. In the text, the γ-string attached to the second external ψ line is denoted as A, the γ-string attached

to the closed fermion loop as B.

(b): A two-loop diagram corresponding to ([S(Γcl)] · ΓDRED)φ†ψε̄, eq. (14). Such two-loop diagrams involving a virtual vector

boson are the only ones where the γ-string B can contain three γ-matrices after integration over the fermion loop momentum.

(c):One-loop diagram corresponding to ([S(Γcl)] · ΓDRED)φ†φ†φψε̄, eq. (15).

The final example we consider concerns the φ4 interaction. It is well-known that in supersymmetric models the
φ4 terms in the scalar potential are completely determined in terms of gauge and Yukawa couplings and do not
involve free parameters. This is in particular the origin of the Higgs boson mass predictions in the MSSM, which
has been computed up to the two-loop level (see [17] for a review). However, the corresponding Slavnov-Taylor
identity describing the correct treatment of the φ4 interaction at the loop level has never been verified, not even at
the one-loop level.

This Slavnov-Taylor identity for the φ4 interaction is given by δ5S(Γ)
δφ†δφδφ†δψδε̄ = 0, and according to (10) its possible

violation is given by

(
i[S(Γcl)] · ΓDRED

)
φ†φφ†ψε̄ . (15)

The diagram in Fig. 1(c) is the only one-loop diagram contributing to this Green function (up to permutations).
As in the previous cases, after integrating over the fermion loop momentum, the γ-string B can contain at most
three γ-matrices, here corresponding to /pi for the three independent incoming momenta pi. Hence the violation (15)
vanishes and the φ4 Slavnov-Taylor identity is valid in DRED at the one-loop level.

5. CONCLUSIONS

We have studied DRED with three aims presented in the introduction. First DRED could be redefined in a
mathematically consistent way. The difference to the traditional formulation concerns only the validity of Fierz and
similar relations but is not relevant in a wide range of applications.
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In a second step a general method to study supersymmetry identities in DRED was developed based on the
quantum action principle (7), (9). Using the consistent formulation of DRED, the quantum action principle could
be established in DRED. Supersymmetry Slavnov-Taylor identities of the form (8) are then generally violated by
the expression

(
i[S(Γcl)] · ΓDRED

)
φn...φ1ε

, eq. (10). This is a Green function involving the insertion of the operator
S(Γcl), which has been evaluated explicitly, see eq. (11).

Finally, this method has been applied to study several supersymmetry identities of practical interest. The identities
for propagators, eq. (13), and for the corresponding supersymmetry transformations have been considered already in
Refs. [6], but only at the one-loop level. We have shown here that rederiving the one-loop results using the described
method is very easy, and we could present the verification of these identities at the two-loop level. In addition, the
identity for the φ4 interaction has been verified at the one-loop level.

In conclusion, the status of DRED has been improved by establishing mathematical consistency, the quantum
action principle and the validity of supersymmetry identities up to the two-loop level. A crucial outcome is that
using the developed method, studying supersymmetry identities is dramatically simplified beyond the considered
examples. For the future it will be important to further study the properties of DRED, in particular to verify that
DRED preserves supersymmetry at least to the level required for loop calculations of LHC- or ILC-observables. This
goal will require more work, but it has come within reach with the results presented here.
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