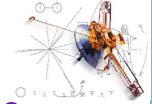


Conclusions and Outline:



The Pioneer 10 and 11 anomalous acceleration:

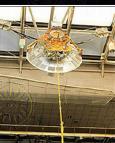
$$a_P = (8.74 \pm 1.33) \times 10^{-8} \text{ cm/s}^2$$

A line-of-sight constant acceleration *towards* the Sun:

- We find no mechanism or theory that explains the anomaly
- Most plausible cause is systematics, yet to be demonstrated

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064

Possible Origin?

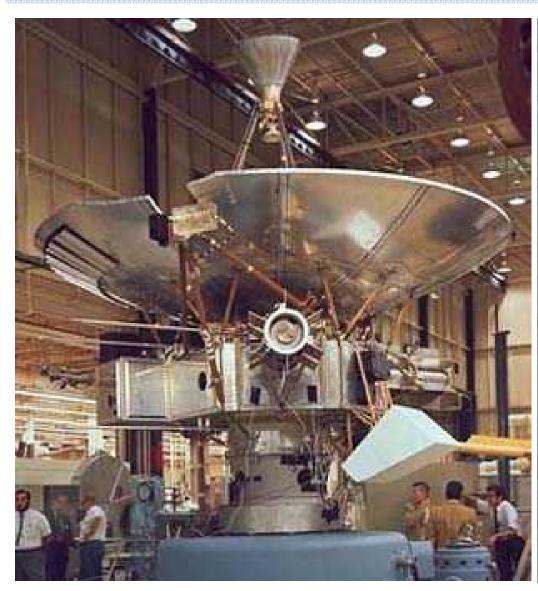

- Conventional Physics [not yet understood]:
 - Gas leaks, heat reflection, drag force, etc...
- New Physics [many proposals exist, some interesting]
- A "win-win" situation, as both are important:
 - CONVENTIONAL explanation: improvement of spacecraft engineering for precise navigation & attitude control
 - NEW physics: would be truly remarkable...

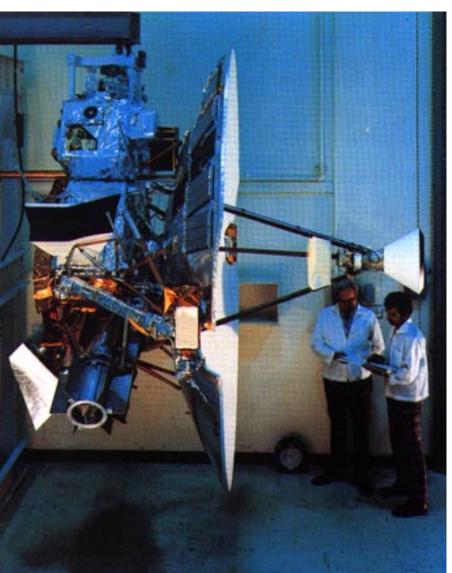
Pioneer 10/11 Mission

- Built: TRW (Northrop-Grumman Space Technology)
- Navigation: Jet Propulsion Laboratory, Caltech
- Project management: NASA Ames Research Center

	Pioneer 10	Pioneer 11
Launch	2 March 1972	5 April 1973
Planetary encounters	Jupiter	Jupiter/Saturn
	4 December 1973	$2 \ { m Dec} \ 1974/1 \ { m Sep} \ 1979$
Mission status	Formally ended	Last data received
	31 March 1997	1 October 1990
Distance from the Sun	$\sim 67 \; \mathbf{AU}$	$\sim 30 \mathrm{AU}$
Direction of motion	Star Aldebaran	Constellation of Aquila
	2 million years	4 million years

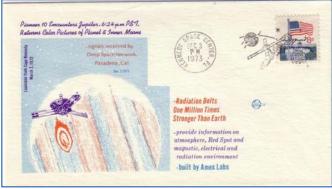
Position of Pioneer 10 on 15 December 2004:

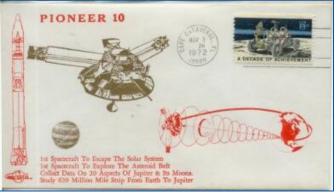

Distance from Sun	86.91 AU	
Position, SE_lat SE_lon	$(3.0^{\circ},~77.4^{\circ})$	
Speed relative to the Sun	$12.24~\mathrm{km/sec}$	
Distance from Earth	13.14 Gkm	
Round-Trip Light Time	$pprox 24 \; \mathrm{hr} \; 22 \; \mathrm{min}$	

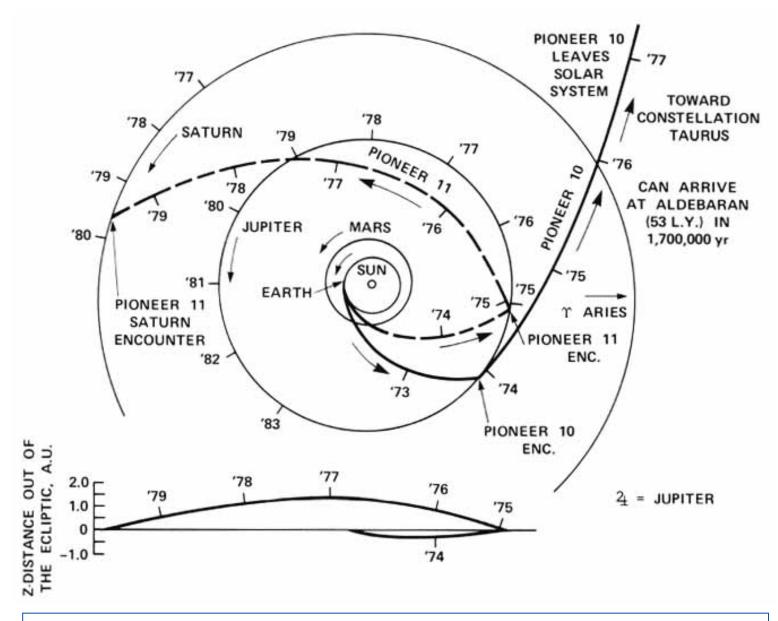

Last successful precession maneuver to point the spacecraft to Earth was accomplished on 11 Feb 2000 (distance from the Sun of 75 AU)

Pioneer F during checkout tests

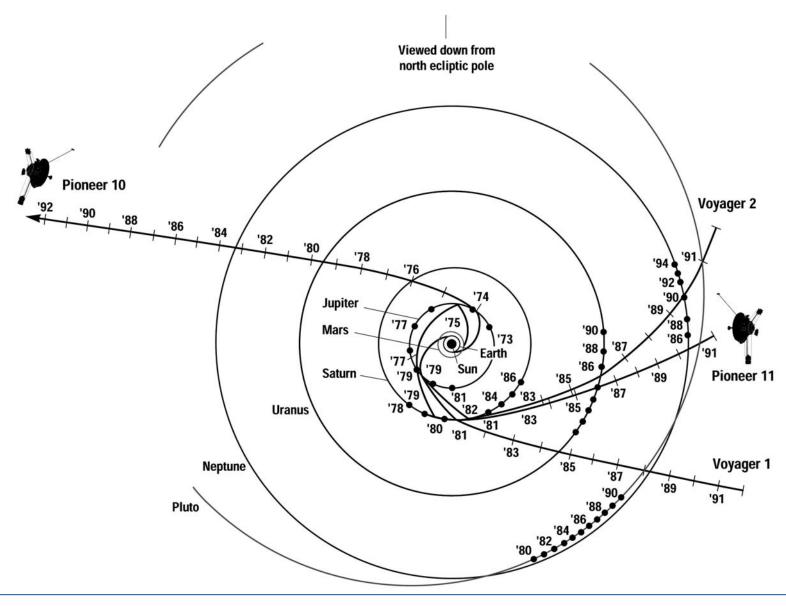
The Pioneer F spacecraft during a checkout with the launch vehicle third stage at Cape Kennedy. Pioneer F became Pioneer 10.


Pioneer 10 Launch: 2 March 1972



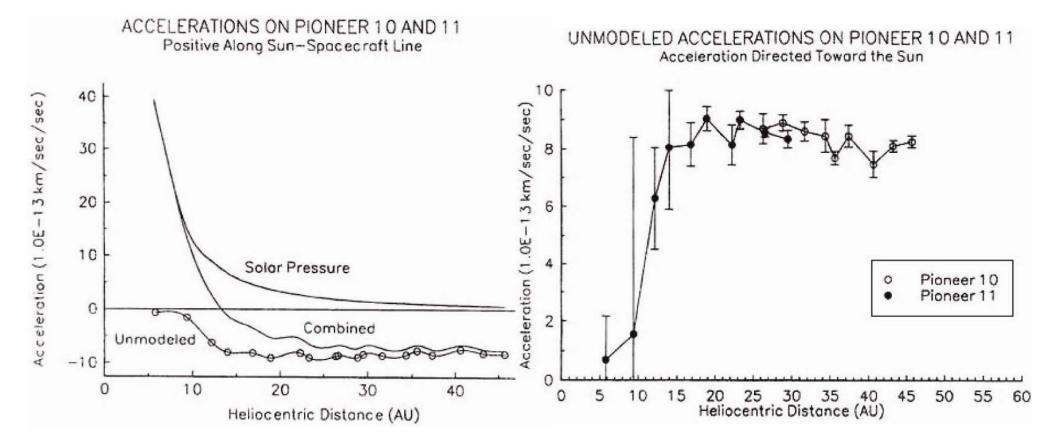


Pioneer 10/11: Main Missions



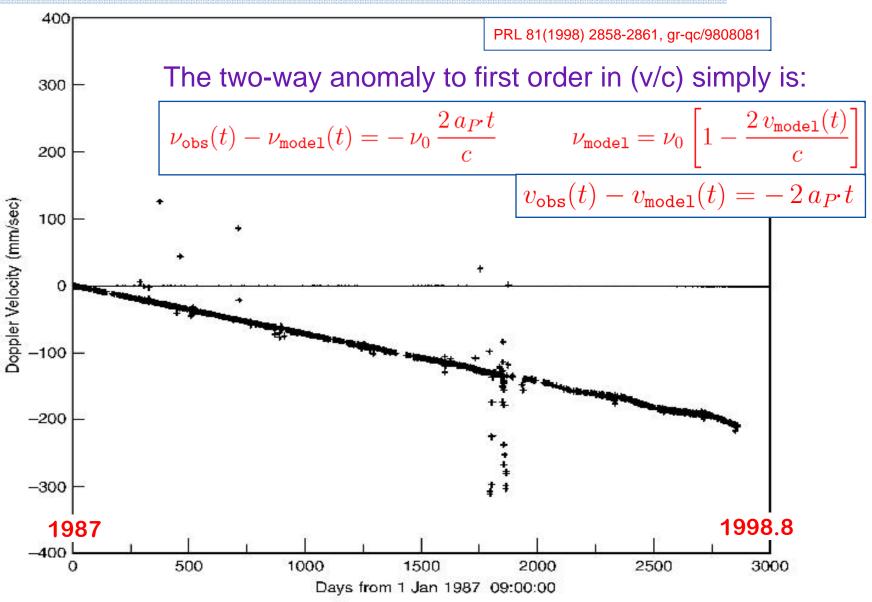
Trajectories for Pioneer 10 and 11 during the main mission phase

Trajectories of Pioneers and Voyagers

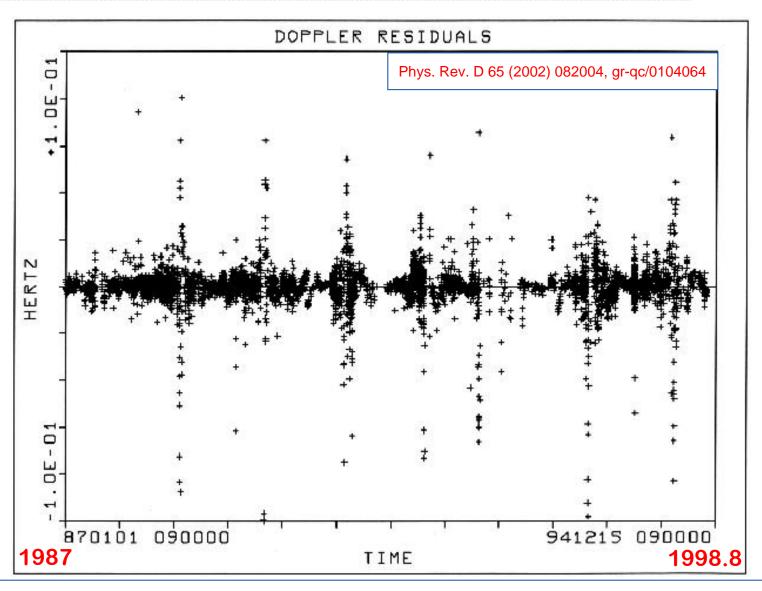

Ecliptic pole view of Pioneer 10, Pioneer 11, and Voyager trajectories. Digital artwork by T. Esposito. NASA ARC Image # AC97-0036-3.

Detection of the Anomaly

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064


- Mid 1979 (search for Planet X with Pioneer 10):
 - Solar-radiation pressure away from the Sun became $< 5 \times 10^{-8}$ cm/s²
 - Search for unmodeled accelerations started (~ 20AU)
- Early 1980 (Orbit Determination Analysis ODP):
 - JPL analysis found the biggest systematic error in the accel residuals is a constant bias $a_P \sim (8 \pm 3) \times 10^{-8}$ cm/s² directed towards the Sun

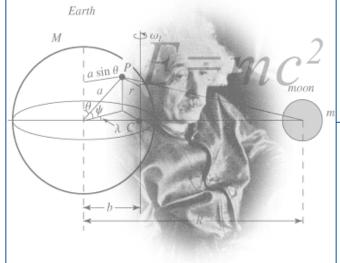
The Pioneer Anomaly



CHASMP two-way Doppler residuals (observed Doppler velocity minus model Doppler velocity) for Pioneer 10 vs time. [1 Hz is equal to 65 mm/s range change per second]

The Pioneer Anomaly

Adding one more parameter to the model – a constant radial acceleration – led to residuals distribution ~ zero Doppler velocity with a systematic variation ~3.0 mm/s. The quality of the fit may be determined by the ratio of residuals to the downlink carrier frequency, $v_0 \approx 2.29$ GHz.


Modeling the Motion of Pioneer 10/11

- Relativistic eq.m. for celestial bodies are correct to (v/c)⁴:
 - Relativistic grav. accelerations (EIH) include: Sun, Moon, 9 planets are point masses in isotropic, PPN, N-body metric;
 - Newtonian gravity from large asteroids; terrestrial, lunar figure effects; Earth's tides; lunar physical librations

$$\ddot{\mathbf{r}}_{i_{\text{point mass}}} = \sum_{j \neq i} \frac{\mu_{j}(\mathbf{r}_{j} - \mathbf{r}_{i})}{r_{ij}^{3}} \left\{ 1 - \frac{2(\beta + \gamma)}{c^{2}} \sum_{k \neq i} \frac{\mu_{k}}{r_{ik}} - \frac{2\beta - 1}{c^{2}} \sum_{k \neq j} \frac{\mu_{k}}{r_{jk}} + \gamma \left(\frac{v_{i}}{c}\right)^{2} + (1 + \gamma) \left(\frac{v_{j}}{c}\right)^{2} - \frac{2(1 + \gamma)}{c^{2}} \dot{\mathbf{r}}_{i} \cdot \dot{\mathbf{r}}_{j} - \frac{3}{2c^{2}} \left[\frac{(\mathbf{r}_{i} - \mathbf{r}_{j}) \cdot \dot{\mathbf{r}}_{j}}{r_{ij}} \right]^{2} + \frac{1}{2c^{2}} (\mathbf{r}_{j} - \mathbf{r}_{i}) \cdot \ddot{\mathbf{r}}_{j} \right\} + \frac{1}{c^{2}} \sum_{j \neq i} \frac{\mu_{j}}{r_{ij}^{3}} \left\{ [\mathbf{r}_{i} - \mathbf{r}_{j}] \cdot [(2 + 2\gamma)\dot{\mathbf{r}}_{i} - (1 + 2\gamma)\dot{\mathbf{r}}_{j}] \right\} (\dot{\mathbf{r}}_{i} - \dot{\mathbf{r}}_{j}) + \frac{(3 + 4\gamma)}{2c^{2}} \sum_{j \neq i} \frac{\mu_{j}\ddot{\mathbf{r}}_{j}}{r_{ij}} + \sum_{m=1}^{3} \frac{\mu_{m}(\mathbf{r}_{m} - \mathbf{r}_{i})}{r_{im}^{3}} + \sum_{c,s,m} \mathbf{F}$$

 \blacksquare Models for light propagation are to $(v/c)^2$:

$$t_2 - t_1 = \frac{r_{21}}{c} + \frac{(1+\gamma)\mu_{\odot}}{c^3} \ln \left[\frac{r_1^{\odot} + r_2^{\odot} + r_{12}^{\odot}}{r_1^{\odot} + r_2^{\odot} - r_{12}^{\odot}} \right] + \sum_i \frac{(1+\gamma)\mu_i}{c^3} \ln \left[\frac{r_1^i + r_2^i + r_{12}^i}{r_1^i + r_2^i - r_{12}^i} \right]$$

Standard Models of Non-Gravitational Forces

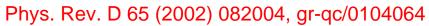
- Model accounts for many sources of non-grav. forces, including:
 - Solar radiation and wind pressure; the interplanetary media
 - Attitude-control propulsive maneuvers; gas leakage from the propulsion system
 - DSN antennae contributions to the spacecraft radio tracking data
 - Torques produced by above mentioned forces
- Orbit determination procedure, includes:
 - Models of precession, nutation, sidereal rotation, polar motion, tidal effects, and tectonic plates drift;
 - Model values of the tidal deceleration, non-uniformity of rotation, polar motion, Love numbers, and Chandler wobble are obtained observationally via LLR, SLR and VLBI (from ICRF):
- Now [after Pioneer] model can be adjusted to include:
 - Effects of the recoil force due to emitted radio power
 - Anisotropic thermal radiation of spacecraft
- Unknown forces are routinely modeled as stochastic accels:
 - Exponentially correlated in time, with a variable time constant
 - Stochastic variable was sampled in 0-, 5-,10-day batches

Sources of External Systematic Error [PRD, 2002]

	Error	budget constituents	Bias	Uncertainty,
			10^{-8} cm/s^2	10^{-8} cm/s^2
\Rightarrow	Solar	radiation pressure		\pm 0.001
	\Rightarrow From	om the mass uncertainty	+0.03	\pm 0.01
\Rightarrow	Solar	wind		$\pm < 10^{-5}$
\Rightarrow	The ef	ffects of the solar corona		\pm 0.02
\Rightarrow	Electro	o-magnetic Lorentz forces		$\pm < 10^{-4}$
\Rightarrow	Influer	nce of the Kuiper belt's gravity		\pm 0.03
\Rightarrow	Influer	nce of the Earth orientation		\pm 0.001
\Rightarrow	Mecha	anical and phase stability of DSN antennae	e	$\pm < 0.001$
\Rightarrow	Phase	stability and clocks		$\pm < 0.001$
\Rightarrow	DSN s	station location		$\pm < 10^{-5}$
				_ \ _ \
\Rightarrow		sphere and ionosphere		$\pm < 0.001$
		sphere and ionosphere	Rias	± < 0.001
			Bias	$\pm < 0.001$ Uncertainty,
		sphere and ionosphere	$egin{array}{c} \mathbf{Bias} \\ 10^{-8} \ \mathbf{cm/s}^2 \end{array}$	$\pm < 0.001$ Uncertainty,
	Tropos	Error budget constituents		$\pm < 0.001$ Uncertainty,
		Error budget constituents Numerical stability of		$\pm < 0.001$ Uncertainty, $10^{-8}~\mathrm{cm/s}^2$
	Tropos ⇒	Error budget constituents Numerical stability of least-squares estimation		$\pm < 0.001$ Uncertainty, $10^{-8}~{ m cm/s}^2$ ± 0.02
	Tropos	Error budget constituents Numerical stability of least-squares estimation Accuracy of consistency/model tests		$\pm < 0.001$ Uncertainty, 10^{-8} cm/s^2 ± 0.02 ± 0.13
	Tropos ⇒	Error budget constituents Numerical stability of least-squares estimation Accuracy of consistency/model tests Mismodeling of maneuvers		$\pm < 0.001$ Uncertainty, $10^{-8} \ { m cm/s}^2$ ± 0.02 ± 0.13 ± 0.01
	Tropos ⇒	Error budget constituents Numerical stability of least-squares estimation Accuracy of consistency/model tests		$\pm < 0.001$ Uncertainty, 10^{-8} cm/s^2 ± 0.02 ± 0.13

Interesting, but not a major source of concern!

Sources of On-board Systematic Error [PRD, 2002]



	Error budget constituents	Bias	Uncertainty,	
		$10^{-8} \; { m cm/s}^2$	10^{-8} cm/s^2	
\Rightarrow	Radio beam reaction force	+1.10	\pm 0.11	
\Rightarrow	Thermal/propulsion effects from RTGs:			
	⇒ RTG heat reflected off the craft	-0.55	$\pm~0.55$	
	⇒ Differential emissivity of the RTGs		$\pm~0.85$	
	⇒ Non-isotropic radiative cooling of s/c		\pm 0.16	
	⇒ Expelled He produced within the RTGs	+0.15	\pm 0.16	
\Rightarrow	Propulsive mass expulsion: gas leakage		± 0.56	
⇒	Variation between s/c determinations	+0.17	± 0.17	
	•			

NASA

Pioneer 10/11 spacecraft

On-board Power and Heat

- Heat & power source: 2×2 SNAP-19 RTGs: Teledyne-Brown
 - $_{94}{
 m Pu}^{238}
 ightarrow _{92}{
 m U}^{234} + {_2}{
 m He}^4$ > half life 87.74 years
 - Converts 5 to 6 % of released heat to electric power \triangleright

Thermal system and on-board power:

Power available:

- \triangleright before launch electric total 165 W (by 2001 \sim 61 W)
- \triangleright needs 100 W to power all systems (\in 24.3 W science instruments)

Heat provided:

- \triangleright before launch thermal fuel total 2580 W (by 2001 \sim 2050 W)
- ▶ electric heaters; 12 one-W RHUs
- ▶ heat from the instruments (dissipation of 70 to 120 W)

if electric power was $> 100 \text{ W} \Rightarrow$ Excess power/heat:

- by thermally radiated into space by a shunt-resistor radiator, or
- charge a battery in the equipment compartment

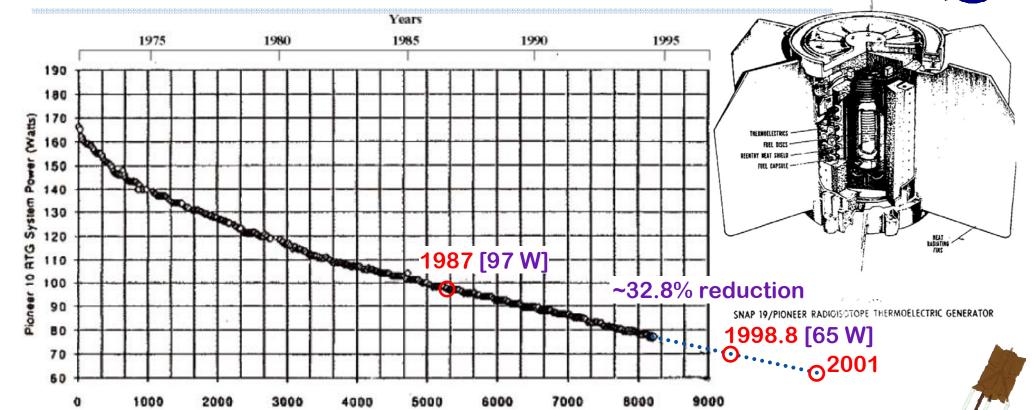
Thermal control:

 \sim 0 - 90 F

▶ thermo-responsive louvers (bi-metallic springs)

 $\sim \downarrow 40 - \uparrow 85 \text{ F}$

▶ insulation: multi-layered aluminized mylar and kapton blankets


Design based on well understood process of on-board nuclear-toelectric energy conversion and heat dissipation within the craft

JPL

THE STUDY OF THE PIONEER ANOMALY

On-board Power and Heat

Days from Launch

Heat is clearly important source, but:

NOT strong enough to explain the anomaly

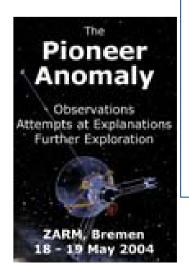
Exponential decay (or linear decrease) is
 NOT seen in the anomaly a_P

IJMP A 17 (2002) 875-885, gr-qc/0107022

Models Used to Explain the Anomaly

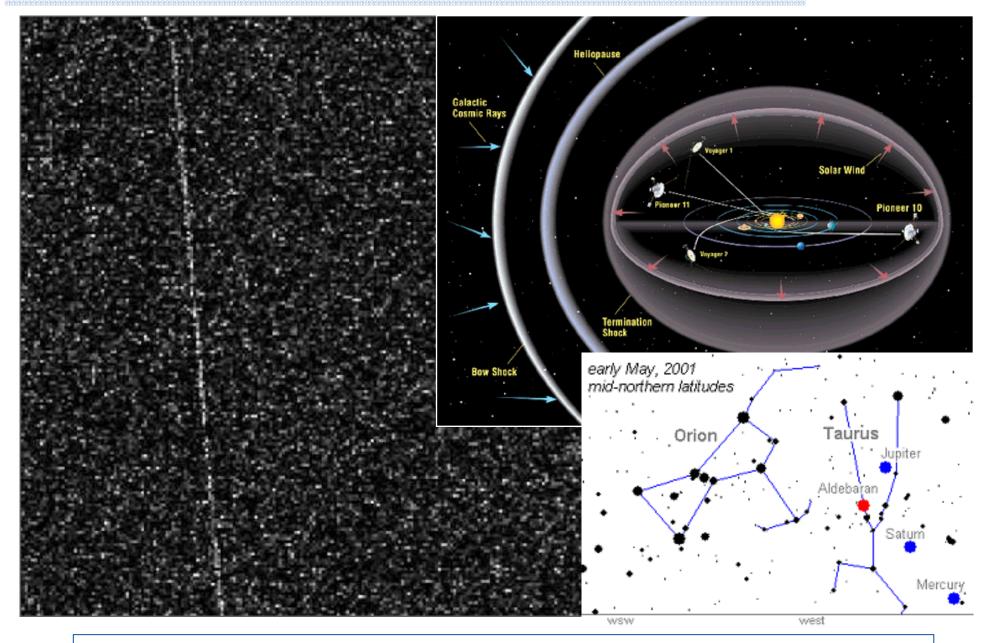
- Models and suggestions that failed to explain the anomaly:
 - Non-gravitational effects:
 - Solar pressure, solar wind, interplanetary medium
 - Precessional attitude control maneuvers and "gas leaks"
 - Nominal thermal radiation, plutonium half life
 - Some viscous drag force (ULY: solar radiation, maneuvers)
 - Gravity from the Kuiper belt; gravity from the Galaxy
 - Dark Matter distributed in a halo around the solar system
 - Drifting clocks, general relativity, the "speed of gravity"
 - Hardware problems at the DSN tracking stations
 - Errors in the planetary ephemerides
 - Errors in the values of the EOP, precession, and nutation;
 - Identical design of Pioneer 10/11 spacecraft (GLL, ULY: solar radiation, maneuvers)
 - Dust in the outer solar system


Many more models had been proposed and investigated


The Pioneer Anomaly: Summary

Our latest result for the Pioneer 10/11 anomalous acceleration:

$$a_P = (8.74 \pm 1.33) \times 10^{-8} \text{ cm/s}^2$$


A line of sight constant acceleration of the s/c toward the Sun:

- We find no mechanism or theory that explains the anomaly;
- The most plausible cause is a systematic, yet to be demonstrated.
- Behavior of the Anomaly:
 - We have no real idea how far out the anomaly goes;
 - a_P continues out roughly as a constant from ~10 AU;
 - Constancy: temporal and spatial variations less then 3.4%;
 - Amplified (or turned on) for hyperbolic, escape trajectories (?)
- Three Different Codes Used:
 - JPL Orbit Determination Program [DPODP various generations];
 - Aerospace Corp [CHASPM/POEAS];
 - GSFC [by Craig Markward in 2003, data from NSSDC].
- Next Steps:
 - Early data processing [work initiated at JPL: fly-byes, entire data set]
 - Focus on different segments: close-in (direction of the anomaly),
 planetary flyby (amplification during flyby), long duration (constancy)
 - A European study of the PA recently initiated (ZARM, Bremen)

Meanwhile... Pioneer 10 @ Arecibo

Pioneer 10, as seen by 305 m antenna at Arecibo Observatory, Puerto Rico

