X-ray Outbursts from Black Hole Binaries

Ron Remillard Center for Space Research, MIT

Outline

- Status Report on Black Hole Binaries
- X-ray States of Accreting Black Holes
 - Modified State Definitions
 - Outline Applications for General Relativity
 - □ X-ray States $\leftarrow \rightarrow$ the Unified Jet Model
- Details on High-Frequency QPOs

Science Goals for BHBs in Outburst

- Locate stellar size black holes 100% from X-ray astronomy
- Measure Black Hole Properties

mass (M_x) and spin ($a_* = cJ/GM_x^2$); event horizon?

Understand Accretion Physics

different physical structures in each state primary variables: $M_x dM/dt$; outflow; *B* geometry; plasma β ?

Recent Reviews and global studies:

McClintock & Remillard 2003; Done & Gierlinski 2003 Fender 2003; Fender & Belloni 2004; Zdziarski & Gierlinski 2004

Inventory: Galactic Black Holes

Dynamical BHBs: $P_{orb} K^3 / 2\pi G = M_x \sin^3(i) / (1 + M_c/M_x)^2$ + estimates for M_c & sin i $\rightarrow M_x = 4 - 18 M_0$ (> neutron star limit)

BH Candidates: no pulsations + no X-ray bursts + properties of BHBs

	<u>Milky Way</u>	<u>LMC</u>
BHBs	18	2
BH Candidates	21	0
total	39	2

Inventory: Galactic Black Holes

Dynamical BHBs: $P_{orb} K^3 / 2\pi G = M_x \sin^3(i) / (1 + M_c/M_x)^2$ + estimates for M_c & sin i $\rightarrow M_x = 4 - 18 M_o$ (> neutron star limit)

BH Candidates: no pulsations + no X-ray bursts + properties of BHBs

	<u>Milky Way</u>	<u>LMC</u>	RXTE Archive
BHBs	18	2	3200 obs; 11 Msec
BH Candidates	21	0	1300 obs; 4 Msec
total	39	2	
X-ray persistent	2 37	2	
Tunsients	01	V	

Black Holes in the Milky Way

18 Black-Hole Binaries in the Milky Way

16 fairly well constrained \rightarrow

(Jerry Orosz)

Scaled, tilted, and colored for surface temp. of companion star.

BH X-ray Transients

GRO J1655-40

 $Mx = 6.3 \pm 0.5 M_{o}$

GRO outburst: 1994-95 + jets

RXTE outburst 1996-97, basically radio-quiet

Active Accretion States of BHBs

1. Thermal State $f_{\text{now}} < 20\%$, no QPOs

inner accretion disk

 f_{pow} < 20%, no QPOs, classical physics: T(r) ~ r^{-3/4} \rightarrow L(r) ~ r⁻²

Active Accretion States of BHBs

GR0 J1655-40

2. Hard State

steady jet

 $f_{pow} > 80\%, \ \Gamma \sim 1.5-2.1$ *rms* (PDS: 0.1-10 Hz) > 10%

(inverse Compton or synchrotron)

Active Accretion States of BHBs

Physical Models for BHB States

Unified Model for Jets in BH Binaries

Fender, Belloni, & Gallo 2004

Jet Conditions & X-ray States

GX339-4

Other multi-state BH transients:

GRS1915+105 4U 1630-47 XTE J1550-564 H1743-322

∆: HARD STATE O: INT: hard <-> SPL * : STEEP POWER LAW O: INT: thermal <-> SPL X: THERMAL

Jet Conditions & X-ray States

GX339-4

∆: HARD STATE O: INT: hard <-> SPL * : STEEP POWER LAW O: INT: thermal <-> SPL X: THERMAL

```
Jet Line vs. X-ray States
```


Temporal Signatures of X-ray States

Temporal Signatures of X-ray States

QPOs (0.1-20 Hz) Common in SPL state

broad power feature near 1 Hz signature of a steady jet?

Applications for Relativistic Astrophysics

steep power law

High Frequency QPOs

Near-Eddington Luminosity

resonances in strong gravity? $v_{\text{apo}} = f(M_x, a_*, r_{\text{res}})$ MHD disk models in GR?

thermal state

Thermal Spectrum $\rightarrow N_{DBB}$, T_{col} $R_{in} = (N_{DBB} \cos i)^{0.5} d^{-1} f_{atm} f(GR)$ $R_{in}(M_x, a^*) \rightarrow \text{constrain spin}$?

GR disk models \rightarrow measure R_{in} in km ?

hard state

steady jet / hard power law

unstable state transitions

jet properties; jet mechanisms?

cause of impulsive jets?

High Frequency QPOs in BHBs & Candidates

High Frequency QPOs

source HFQPO v (Hz)

GRO J1655-40 300, 450

XTE J1550-564 184, 276

- GRS 1915+105 41, 67, 113, 168
- XTE J1859+226 190
- 4U1630-472 184 + broad features (Klein-Wolt et al. 2003)
- XTE J1650-500 250

- H1743-322 165, 241
 - (recent case: Homan et al. 2004; Remillard et al. 2004)

High Frequency QPOs

<u>source</u>	<u>ΗFQPO ν (</u>	Hz)

- GRO J1655-40 **300, 450**
- XTE J1550-564 184, 276
- GRS 1915+105 41, 67, 113, 168
- XTE J1859+226 190
- 4U1630-472 184
- XTE J1650-500 250

H1743-322 **165, 241**

4 HFQPO pairs with frequencies in 3:2 ratio

HFQPOs and General Relativity

- **Resonance** in the Inner Disk (Abramowicz & Kluzniak 2001)
 - Turbulence 'blobs' and arcs linger at r_{res}?
 - □ Resonance related to GR frequencies for 3 coordinates {r, θ , ϕ } → e.g. v_r , v_{ϕ} or v_r , v_{θ} resonance
 - Observers see coordinate frequencies or beats
 ... feasible: ray tracing study by Schnittman & Bertschinger 2003
- **Diskoseismology** (Wagoner 1999; Kato 2001)
 - □ adiabatic perturbation g-modes \rightarrow v_o, 4.1v_o
 - ? Add complexities {thick disk, model for SPL, nonlinear effects}
- **Other Models** (e,g. accretion torrus, Rezzolla et al. 2003)

GR Coordinate Frequencies

$$v_{r, \theta, \phi} = f(M_x, a_*, r)$$
 (r in units GM_x/c^2)

$$v_{\phi} = c^{3}/GM_{x} \left[2\pi r^{3/2} (1 + a_{*} r^{-3/2}) \right]^{-1}$$

$$v_{r} = |v_{\phi}| (1 - 6r^{-1} + 8a_{*} r^{-3/2} - 3a_{*}^{2} r^{-2})^{1/2}$$

$$v_{\theta} = |v_{\phi}| (1 - 4a_{*} r^{-3/2} + 3a_{*}^{2} r^{-2})^{1/2}$$

see Merloni et al. 1999 Investigation for neutron star QPOs by Stella et al. 1999

QPO Pairs vs. BH Mass

GROJ1655, XTEJ1550, GRS1915

 v_{qpo} at $2v_o$: $v_o = 931$ Hz / M_x

□ Same QPO mech. And same a_{*}

□ a_{*} ~ 0.3-0.4 if QPOs are v_{ϕ} and v_{ϕ} - v_{r}

Compare subclasses
 while model efforts continue.

Combining X-ray Timing & Spectroscopy GRO J1655-40 1996-1997 15 **GRO J1655-40** Power-Law Flux (1-25 keV) x: thermal (no QPOs) 10 Δ : SPL + only Low-Freq. QPOs *: SPL + LFQPOs + HFQPOs; 5

0

Ω

2

Λ

6 Bolometric Disk Flux 10

Я

12

Combining X-ray Timing & Spectroscopy

XTE J1550-564

x: no QPOs, thermal dom.

∆: only Low-Freq. QPOs (0.05-20 Hz; SPL, Hard, or INT)

SPL + LFQPOs + HFQPOs; (at Hz: 184(), 276(*), other (o))

X-ray Spectral Lines & Secondary Components

Deduce disk/pow structures ?

- Broad Fe Kα Emission Lines

 (Profiles with spin? ...which states?)
 Balucinska-Church & Church 2000;
 Miller et al. 2002a,b,c; Martocchia et al. 2002
- Disk Reflection Spectra (Reflection vs. states?)
 e.g. Done et al. 1999; Done & Nayakshin 2001

Spectral Lines from Hot Gas
 disk atmosphere? ...outflow? ...vs. state?
 Lee et al. 2001; Miller et al. 2004

Conclusions

- All 3 states of active accretion in BH binaries offer specific applications for relativistic astrophysics.
- There are 2 different 'soft' states (thermal & steep power law).
- Non-thermal states appear to have distinct temporal signatures:
 1 Hz (very broad) for hard state / steady jet; ~5 Hz for SPL
- Outstanding Problems:
 - Origin of Steep Power Law component (? MHD instability \rightarrow QPOs).
 - □ Kerr-disk spectral models; difficult, yet 1000+ thermal spectra await.